首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着高通量测序技术的不断更新,可以在单个分子水平读取核苷酸序列的第三代测序技术迅速发展,纳米孔测序技术是其具有代表性的单分子测序技术,该技术通过检测DNA单链分子穿过纳米孔时引起的跨膜电流信号的变化,实现碱基识别.纳米孔测序仪在便携性、碱基读取速度、测序读段长度等方面较传统的第一代与第二代测序技术都有明显优势.随着纳米...  相似文献   

2.
3.
Disease associated chromosomal rearrangements often have break points located within disease causing genes or in their vicinity. The purpose of this study is to characterize a balanced reciprocal translocation in a girl with intellectual disability and seizures by positional cloning and whole genome sequencing. The translocation was identification by G- banding and confirmed by WCP FISH. Fine mapping using BAC clones and whole genome sequencing using Oxford nanopore long read sequencing technology for a 1.46 X coverage of the genome was done. The positional cloning showed split signals with BAC RP11-943 J20. Long read sequencing analysis of chimeric reads carrying parts of chromosomes X and 20 helped to identify the breakpoints to be in intron 2 of ARHGEF9 gene on Xp11.1 and on 20p13 between RASSF2 and SLC23A2 genes. This is the first report of translocation which successfully delineated to single base resolution using Nanopore sequencing. The genotype-phenotype correlation is discussed.  相似文献   

4.
DNA methylation is essential in brain function and behavior; therefore, understanding the role of DNA methylation in brain-based disorders begins with the study of DNA methylation profiles in normal brain. Determining the patterns and scale of methylation conservation and alteration in an evolutionary context enables the design of focused but effective methylation studies of disease states. We applied an enzymatic-based approach, Methylation Mapping Analysis by Paired-end Sequencing (Methyl-MAPS), which utilizes second-generation sequencing technology to provide an unbiased representation of genome-wide DNA methylation profiles of human and mouse brains. In this large-scale study, we assayed CpG methylation in cerebral cortex of neurologically and psychiatrically normal human postmortem specimens, as well as mouse forebrain specimens. Cross-species human-mouse DNA methylation conservation analysis shows that DNA methylation is not correlated with sequence conservation. Instead, greater DNA methylation conservation is correlated with increasing CpG density. In addition to CpG density, these data show that genomic context is a critical factor in DNA methylation conservation and alteration signatures throughout mammalian brain evolution. We identify key genomic features that can be targeted for identification of epigenetic loci that may be developmentally and evolutionarily conserved and wherein aberrations in DNA methylation patterns can confer risk for disease.  相似文献   

5.
DNA methylation is an epigenetic mark crucial in regulation of gene expression. Aberrant DNA methylation causes silencing of tumor suppressor genes and promotes chromosomal instability in human cancers. Most of previous studies for DNA methylation have focused on limited genomic regions, such as selected genes or promoter CpG islands (CGIs) containing recognition sites of methylation-sensitive restriction enzymes. Here, we describe a method for high-resolution analysis of DNA methylation using oligonucleotide tiling arrays. The input material is methylated DNA immunoprecipitated with anti-methylcytosine antibodies. We examined the ENCODE region (∼1% of human genome) in three human colorectal cancer cell lines and identified over 700 candidate methylated sites (CMS), where 24 of 25 CMS selected randomly were subsequently verified by bisulfite sequencing. CMS were enriched in the 5′ regulatory regions and the 3′ regions of genes. We also compared DNA methylation patterns with histone H3 and H4 acetylation patterns in the HOXA cluster region. Our analysis revealed no acetylated histones in the hypermethylated region, demonstrating reciprocal relationship between DNA methylation and histone H3 and H4 acetylation. Our method recognizes DNA methylation with little bias by genomic location and, therefore, is useful for comprehensive high-resolution analysis of DNA methylation providing new findings in the epigenomics. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

6.
《Epigenetics》2013,8(11):1308-1318
DNA methylation is essential in brain function and behavior; therefore, understanding the role of DNA methylation in brain-based disorders begins with the study of DNA methylation profiles in normal brain. Determining the patterns and scale of methylation conservation and alteration in an evolutionary context enables the design of focused but effective methylation studies of disease states. We applied an enzymatic-based approach, Methylation Mapping Analysis by Paired-end Sequencing (Methyl-MAPS), which utilizes second-generation sequencing technology to provide an unbiased representation of genome-wide DNA methylation profiles of human and mouse brains. In this large-scale study, we assayed CpG methylation in cerebral cortex of neurologically and psychiatrically normal human postmortem specimens, as well as mouse forebrain specimens. Cross-species human-mouse DNA methylation conservation analysis shows that DNA methylation is not correlated with sequence conservation. Instead, greater DNA methylation conservation is correlated with increasing CpG density. In addition to CpG density, these data show that genomic context is a critical factor in DNA methylation conservation and alteration signatures throughout mammalian brain evolution. We identify key genomic features that can be targeted for identification of epigenetic loci that may be developmentally and evolutionarily conserved and wherein aberrations in DNA methylation patterns can confer risk for disease.  相似文献   

7.
The bisulfite genomic sequencing method is one of the most widely used techniques for methylation analysis in heterogeneous unbiased PCR, amplifying for both methylated and unmethylated alleles simultaneously. However, it requires labor-intensive and time-consuming cloning and sequencing steps. In the current study, we used a denaturing high-performance liquid chromatography (DHPLC) procedure in a complementary way with the bisulfite genomic sequencing to analyze the methylation of differentially methylated regions (DMRs) of imprinted genes. We showed reliable and reproducible results in distinguishing overall methylation profiles of DMRs regions of human SNRPN, H19, MEST/PEG1, LIT1, IGF2, TSSC5, WT1 antisense, and mouse H19, Mest/Peg1, Igf2R imprinted genes. These DHPLC profiles were in accordance with bisulfite genomic sequencing data and may serve as a type of "fingerprint," revealing the overall methylation status of DMRs associated with sample heterogeneity. We conclude that DHPLC analysis could be used to increase the throughput efficiency of methylation pattern analysis of imprinted genes after the bisulfite conversion of genomic DNA and unbiased PCR amplification.  相似文献   

8.
测序技术在通量和成本方面有了较大的改进,以单分子纳米孔测序技术为代表的第三代测序技术更是以其超长读长、实时检测和可以直接检测碱基甲基化修饰等优势在医学及生命科学等领域作出了较大贡献。文中就单分子纳米孔测序技术的原理进行了简要描述,并对其在临床、动物、植物、细菌及病毒等领域的应用和其未来的发展方向进行了讨论。  相似文献   

9.
Long-read sequencing provides valuable information on difficult-to-map genomic regions, which can complement short-read sequencing to improve genome assembly, yet limited methods are available to accurately detect DNA methylation over long distances at a whole-genome scale. By combining our recently developed TET-assisted pyridine borane sequencing (TAPS) method, which enables direct detection of 5-methylcytosine and 5-hydroxymethylcytosine, with PacBio single-molecule real-time sequencing, we present here whole-genome long-read TAPS (wglrTAPS). To evaluate the performance of wglrTAPS, we applied it to mouse embryonic stem cells as a proof of concept, and an N50 read length of 3.5 kb is achieved. By sequencing wglrTAPS to 8.2× depth, we discovered a significant proportion of CpG sites that were not covered in previous 27.5× short-read TAPS. Our results demonstrate that wglrTAPS facilitates methylation profiling on problematic genomic regions with repetitive elements or structural variations, and also in an allelic manner, all of which are extremely difficult for short-read sequencing methods to resolve. This method therefore enhances applications of third-generation sequencing technologies for DNA epigenetics.  相似文献   

10.
DNA methylation is one of the most important epigenetic alterations involved in the control of gene expression. Bisulfite sequencing of genomic DNA is currently the only method to study DNA methylation patterns at single-nucleotide resolution. Hence, next-generation sequencing of bisulfite-converted DNA is the method of choice to investigate DNA methylation profiles at the genome-wide scale. Nevertheless, whole genome sequencing for analysis of human methylomes is expensive, and a method for targeted gene analysis would provide a good alternative in many cases where the primary interest is restricted to a set of genes.Here, we report the successful use of a custom Agilent SureSelect Target Enrichment system for the hybrid capture of bisulfite-converted DNA. We prepared bisulfite-converted next-generation sequencing libraries, which are enriched for the coding and regulatory regions of 174 ADME genes (i.e. genes involved in the metabolism and distribution of drugs). Sequencing of these libraries on Illumina’s HiSeq2000 revealed that the method allows a reliable quantification of methylation levels of CpG sites in the selected genes, and validation of the method using pyrosequencing and the Illumina 450K methylation BeadChips revealed good concordance.  相似文献   

11.
Bisulfite sequencing is widely used for analysis of DNA methylation status (i.e., 5-methylcytosine [5mC] vs. cytosine [C]) in CpG-rich or other loci in genomic DNA (gDNA). Such methods typically involve reaction of gDNA with bisulfite followed by polymerase chain reaction (PCR) amplification of specific regions of interest that, overall, converts C→T (thymine) and 5mC→C and then capillary sequencing to measure C versus T composition at CpG sites. Massively parallel sequencing by oligonucleotide ligation and detection (SOLiD) has recently enabled relatively low-cost whole genome sequencing, and it would be highly desirable to apply such massively parallel sequencing to bisulfite-converted whole genomes to determine DNA methylation status of an entire genome, which has heretofore not been reported. As an initial step toward achieving this goal, we have extended our ongoing interest in improving bisulfite conversion sample preparation to include a human genome-wide fragment library for SOliD. The current article features novel use of formamide denaturant during bisulfite conversion of a suitably constructed library directly in a band slice from polyacryamide gel electrophoresis (PAGE). To validate this new protocol for 5mC-protected fragment library conversion, which we refer to as Bis-PAGE, capillary-based size analysis and Sanger sequencing were carried out for individual amplicons derived from single-molecule PCR (smPCR) of randomly selected library fragments. smPCR/Capillary Sanger sequencing of approximately 200 amplicons unambiguously demonstrated greater than 99% C→T conversion. All of these approximately 200 Sanger sequences were analyzed with a previously published web-accessible bioinformatics tool (methBLAST) for mapping to human chromosomes, the results of which indicated random distribution of analyzed fragments across all chromosomes. Although these particular Bis-PAGE conversion and quality control methods were exemplified in the context of a fragment library for SOLiD, the concepts can be generalized to include other genome-wide library constructions intended for DNA methylation analysis by alternative high-throughput or massively parallelized methods that are currently available.  相似文献   

12.
DNA methylation pattern mapping is heavily studied in normal and diseased tissues. A variety of methods have been established to interrogate the cytosine methylation patterns in cells. Reduced representation of whole genome bisulfite sequencing was developed to detect quantitative base pair resolution cytosine methylation patterns at GC-rich genomic loci. This is accomplished by combining the use of a restriction enzyme followed by bisulfite conversion. Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) increases the biologically relevant genomic loci covered and has been used to profile cytosine methylation in DNA from human, mouse and other organisms. ERRBS initiates with restriction enzyme digestion of DNA to generate low molecular weight fragments for use in library preparation. These fragments are subjected to standard library construction for next generation sequencing. Bisulfite conversion of unmethylated cytosines prior to the final amplification step allows for quantitative base resolution of cytosine methylation levels in covered genomic loci. The protocol can be completed within four days. Despite low complexity in the first three bases sequenced, ERRBS libraries yield high quality data when using a designated sequencing control lane. Mapping and bioinformatics analysis is then performed and yields data that can be easily integrated with a variety of genome-wide platforms. ERRBS can utilize small input material quantities making it feasible to process human clinical samples and applicable in a range of research applications. The video produced demonstrates critical steps of the ERRBS protocol.  相似文献   

13.
DNA甲基化分析是认识生理、病理条件下基因表达变化的重要途径.亚硫酸氢盐转化是DNA甲基化分析的瓶颈.本文旨在改进琼脂糖 亚硫酸氢盐DNA处理方案(agarose bisulfite method),建立一种简便稳定、适合常规甲基化分析的亚硫酸氢盐转化法.把DNA包入普通琼脂糖,以饱和亚硫酸氢盐在较高的温度下快速处理,然后用离心柱型琼脂糖凝胶DNA回收试剂盒,集DNA凝胶回收、脱盐、脱磺基和纯化于一体,完成整个转化过程.Bisulfite-PCR、克隆测序和酶切法分析转化率、转化特异性和转化物的质量.用该方案处理的HeLa细胞DNA,多个片段的转化率均大于98%,甲基化片段96.2%的CpG保持不变,可以扩增605 bp的较大片段,灵敏度介于普通法和琼脂糖亚硫酸氢盐法之间,而重复性较二者都好.改良后的方案简化了操作流程,快速稳定,易学易用,可实现高效特异转化,适合于一般实验者对常规检材进行DNA甲基化分析.  相似文献   

14.
Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor signal/noise ratio.  相似文献   

15.
A key benefit of long-read nanopore sequencing technology is the ability to detect modified DNA bases, such as 5-methylcytosine. The lack of R/Bioconductor tools for the effective visualization of nanopore methylation profiles between samples from different experimental groups led us to develop the NanoMethViz R package. Our software can handle methylation output generated from a range of different methylation callers and manages large datasets using a compressed data format. To fully explore the methylation patterns in a dataset, NanoMethViz allows plotting of data at various resolutions. At the sample-level, we use dimensionality reduction to look at the relationships between methylation profiles in an unsupervised way. We visualize methylation profiles of classes of features such as genes or CpG islands by scaling them to relative positions and aggregating their profiles. At the finest resolution, we visualize methylation patterns across individual reads along the genome using the spaghetti plot and heatmaps, allowing users to explore particular genes or genomic regions of interest. In summary, our software makes the handling of methylation signal more convenient, expands upon the visualization options for nanopore data and works seamlessly with existing methylation analysis tools available in the Bioconductor project. Our software is available at https://bioconductor.org/packages/NanoMethViz.  相似文献   

16.
Bisulfite sequencing is a valuable tool for mapping the position of 5-methylcytosine in the genome at single base resolution. However, the associated chemical treatment causes strand scission, which depletes the number of sequenceable DNA fragments in a library and thus necessitates PCR amplification. The AT-rich nature of the library generated from bisulfite treatment adversely affects this amplification, resulting in the introduction of major biases that can confound methylation analysis. Here, we report a method that enables more accurate methylation analysis, by rebuilding bisulfite-damaged components of a DNA library. This recovery after bisulfite treatment (ReBuilT) approach enables PCR-free bisulfite sequencing from low nanogram quantities of genomic DNA. We apply the ReBuilT method for the first whole methylome analysis of the highly AT-rich genome of Plasmodium berghei. Side-by-side comparison to a commercial protocol involving amplification demonstrates a substantial improvement in uniformity of coverage and reduction of sequence context bias. Our method will be widely applicable for quantitative methylation analysis, even for technically challenging genomes, and where limited sample DNA is available.  相似文献   

17.
MOTIVATION: Methylation of cytosines in DNA plays an important role in the regulation of gene expression, and the analysis of methylation patterns is fundamental for the understanding of cell differentiation, aging processes, diseases and cancer development. Such analysis has been limited, because technologies for detailed and efficient high-throughput studies have not been available. We have developed a novel quantitative methylation analysis algorithm and workflow based on direct DNA sequencing of PCR products from bisulfite-treated DNA with high-throughput sequencing machines. This technology is a prerequisite for success of the Human Epigenome Project, the first large genome-wide sequencing study for DNA methylation in many different tissues. Methylation in tissue samples which are compositions of different cells is a quantitative information represented by cytosine/thymine proportions after bisulfite conversion of unmethylated cytosines to uracil and PCR. Calculation of quantitative methylation information from base proportions represented by different dye signals in four-dye sequencing trace files needs a specific algorithm handling imbalanced and overscaled signals, incomplete conversion, quality problems and basecaller artifacts. RESULTS: The algorithm we developed has several key properties: it analyzes trace files from PCR products of bisulfite-treated DNA sequenced directly on ABI machines; it yields quantitative methylation measurements for individual cytosine positions after alignment with genomic reference sequences, signal normalization and estimation of effectiveness of bisulfite treatment; it works in a fully automated pipeline including data quality monitoring; it is efficient and avoids the usual cost of multiple sequencing runs on subclones to estimate DNA methylation. The power of our new algorithm is demonstrated with data from two test systems based on mixtures with known base compositions and defined methylation. In addition, the applicability is proven by identifying CpGs that are differentially methylated in real tissue samples.  相似文献   

18.
单分子实时测序技术的原理与应用   总被引:1,自引:0,他引:1  
柳延虎  王璐  于黎 《遗传》2015,37(3):259-268
单分子DNA测序技术是近10年发展起来的新一代测序技术,也称为第三代测序技术,包括单分子实时测序、真正单分子测序、单分子纳米孔测序等技术。文章介绍了单分子实时(Single-molecule real-time,SMRT)测序技术的基本原理、性能以及应用。与Sanger测序法和下一代测序技术相比,SMRT测序具有超长读长、测序周期短、无需模板扩增和直接检测表观修饰位点等特点,为研究人员提供了新选择。同时,SMRT测序的低准确率备受争议(约85%),其中约93%的错误是插入缺失,因此,其数据应用于基因组组装前需先对数据进行纠错处理。目前,SMRT测序在小型基因组从头测序和完整组装中已有良好应用,并且已经或将在表观遗传学、转录组学、大型基因组组装等领域发挥其优势,促进基因组学的研究。  相似文献   

19.
Rapid and quantitative method of allele-specific DNA methylation analysis   总被引:2,自引:0,他引:2  
Several biological phenomena depend on differential methylation of chromosomal strands. While understanding the role of these processes requires information on allele-specific methylation, the available methodologies are not quantitative or labor-intensive. We describe a novel, rapid method to quantitate allele-specific DNA methylation based on the combination of bisulfite PCR and Pyrosequencing. In this method, DNA is first treated with sodium bisulfite, which converts cytosine but not 5-methylcytosine to uracil. Genes of interest are subsequently amplified using PCR. Allele-specific methylation can then be determined by pyrosequencing each allele individually using sequencing primers that incorporate single nucleotide polymorphisms (SNPs) that allow differentiation between the two parental alleles. This allele-specific methylation methodology can potentially afford quantitative analyses relevant to the regulation of X chromosome inactivation, allele-specific expression of genes in the immune system, repetitive elements, and genomic imprinting. As an illustration of our new method, we quantitated allele-specific methylation of the differentially methylated region of the H19 gene, which is imprinted. Although we could reliably determine allele-specific methylation with our technique, additional studies will be required to confirm the ability of our assay to measure loss of imprinting.  相似文献   

20.
High sensitivity mapping of methylated cytosines.   总被引:79,自引:16,他引:63       下载免费PDF全文
An understanding of DNA methylation and its potential role in gene control during development, aging and cancer has been hampered by a lack of sensitive methods which can resolve exact methylation patterns from only small quantities of DNA. We have now developed a genomic sequencing technique which is capable of detecting every methylated cytosine on both strands of any target sequence, using DNA isolated from fewer than 100 cells. In this method, sodium bisulphite is used to convert cytosine residues to uracil residues in single-stranded DNA, under conditions whereby 5-methylcytosine remains non-reactive. The converted DNA is amplified with specific primers and sequenced. All the cytosine residues remaining in the sequence represent previously methylated cytosines in the genome. The work described has defined procedures that maximise the efficiency of denaturation, bisulphite conversion and amplification, to permit methylation mapping of single genes from small amounts of genomic DNA, readily available from germ cells and early developmental stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号