首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
In the telomeres of the silkworm Bombyx mori, telomeric repeat-specific non-long terminal repeat (LTR) retrotransposon SARTBm1 is accumulated in the TTAGG telomeric repeats. Here, we identify novel telomeric repeat-specific non-LTR retrotransposons, SARTTc family, from the red flour beetle Tribolium castaneum in the unconventional TCAGG telomeric repeats. To compare the sequence specificity of SARTBm1 and SARTTc1, we developed a comparable ex vivo retrotransposition assay. Both SARTBm1 and SARTTc1 preferred the telomeric sequence of their hosts, suggesting that the target specificity of these retrotransposons coevolved with their host's telomeric repeats. Swapping experiment indicated that the endonuclease domain is involved in recognizing the target sequence. Moreover, SARTBm1 proteins could retrotranspose 3'untranslated region (UTR) sequence of SARTTc1 as well as their own 3'UTR, whereas SARTTc1 proteins could only retrotranspose their own 3'UTRs. These results provide insights to the mechanism and divergence of sequence specificity and 3'UTR recognition in non-LTR retrotransposons.  相似文献   

12.
13.
14.
15.
16.
17.
LINEs mobilize SINEs in the eel through a shared 3' sequence   总被引:15,自引:0,他引:15  
Kajikawa M  Okada N 《Cell》2002,111(3):433-444
  相似文献   

18.
19.
Five short interspersed repetitive elements (SINEs) were found fortuitously in the introns of a steroid hormone receptor AaHR3-2 gene of the yellow fever mosquito, Aedes aegypti, constituting a novel family of tRNA-related SINEs named Feilai. In addition, nine other Feilai elements were found in currently available sequences in Ae. aegypti, six of which were also near genes. Approximately 5.9 x 10(4) copies of Feilai were present in Ae. aegypti, equivalent to 2% of the entire genome. An additional 35 Feilai elements were isolated from a genomic library. Of the total 49 Feilai elements, 20 were full-length. Sequence comparisons and phylogenetic analyses of the full-length elements strongly suggest that there are at least two subfamilies within the Feilai family. There is a high degree of conservation within the two subfamilies. However, sequence divergence between the subfamilies, along with the presence of highly degenerate Feilai elements, suggests that Feilai is likely a diverse family of SINEs that has existed in Ae. aegypti for a long time. Many Feilai elements were closely associated with other transposons, especially with fragments of non-LTR retrotransposons and miniature inverted-repeat transposable elements. The 500-bp sequences immediately flanking a Feilai element were highly A + T-rich, which is consistent with the fact that no Feilai has been found in the coding regions of genes. It is likely that the highly reiterated and interspersed Feilai elements are partially responsible for the pattern of short-period interspersion of the Ae. aegypti genome. The evolutionary relationship between Feilai and the Ae. aegypti genome is likely complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号