首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of up to 20 mol% incorporation of alpha-tocopherol on acyl chain order and dynamics in liquid crystalline phosphatidylcholine (PC) membranes was studied as a function of acyl chain unsaturation by electron spin resonance (ESR) of 5-, 7-, 12- and 16-doxyl spin labelled stearic acids intercalated into the membrane. Order parameters S in the upper portion of the chain (positions 5 and 7) and correlation times tau C in the lower portion (positions 12 and 16) determined from the ESR spectra indicate that in general alpha-tocopherol restricts acyl chain motion within the membrane. The magnitude of the increases in order appears to be dependent upon phospholipid molecular area, being the greatest (up to 15%) in saturated dimyristoylphosphatidylcholine (14:0-14:0 PC) which possesses a relatively small area per molecule as opposed to much smaller increases (less than 3%) in unsaturated PC membranes of larger molecular area. This behavior is interpreted as incompatible with the hypothesis of Lucy and coworkers (A.T. Diplock and J.A. Lucy (1973) FEBS Lett. 29, 205-210), who proposed that membranes are structurally stabilized by interactions between the phytyl side chain of alpha-tocopherol and the polyunsaturated chains of phospholipids.  相似文献   

2.
The high resolution (narrow linewidth) amphiphilic spin probe perdeutero di-t-butyl nitroxide (PDDTBN) has been used to investigate the effect of alpha-tocopherol on lecithin liposomes. The electron spin resonance (ESR) results obtained as a function both of alpha-tocopherol concentration and of temperature indicate the presence of two different hydrophobic sites for the spin probe molecules. The presence of two distinct phases, one alpha-tocopherol-poor and the other alpha-tocopherol-rich, is suggested in these phospholipid bilayers.  相似文献   

3.
Genistein (5,7,4′-trihydroxyisoflavone) the common soy beans isoflavone has attracted scientific interest due to its antioxidant, estrogenic, antiangiogenic and aniticancer activities. The aim of the present study was to investigate the interaction of genistein with biological (erythrocyte) and model membranes (dimyristoyl- and dipalmitoylphosphatidylcholine). Using Laurdan and Prodan as fluorescent probes, we demonstrated phase behavior and membrane fluidity changes induced by genistein. ESR spectroscopy revealed alterations caused by genistein in membrane domains structure and mobility of spin probes with free radicals located at different depths of membrane. The method of ESR spectra decomposition and computer simulation of the recorded spectra were used in order to visualize domain coexistence by GHOST condensation method. Fluorescence and ESR spectroscopy experiments performed at different temperatures enabled us to observe the effect of isoflavone on phospholipid bilayers in either gel or liquid crystalline phase. It was concluded that genistein preferentially intercalated into lipid headgroup region, to some extent into polar–apolar interface and only in minimal degree into hydrophobic core of the membrane. According to our best knowledge this is the first study on modification of domain structure of membranes by genistein.  相似文献   

4.
For the elucidation of the mechanism of membrane stabilization by vitamin E, the effects of alpha-tocopherol and its model compounds on either retinol-induced hemolysis of rabbit erythrocytes or the permeability and fluidity of liposomal membranes have been studied. Retinol-induced rabbit erythrocyte hemolysis has been found not to be caused by the oxidative disruption of erythrocyte membrane lipids initiated by retinol oxidation, but rather to arise from physical damage of the membrane micelle induced by penetration of retinol molecules. In suppressing hemolysis, alpha-tocopherol was more effective than other naturally occurring tocopherols. alpha-Tocopheryl acetate, nicotinate, and 6-deoxy-alpha-tocopherol were more effective than alpha-tocopherol itself. The inhibitory effects of alpha-tocopherol model compounds having side chains with at least two isoprene units or a long straight chain instead of the isoprenoid side chain were similar to those of alpha-tocopherol. These data suggest that for protection of membranes against retinol-induced damage, the hydroxyl group of alpha-tocopherol is not critical, but rather the chroman ring, three methyl groups on the aromatic ring, and the long side chain are necessary. To verify the mechanism of the inhibitory effect on hemolysis, not only the effect of vitamin E and its model compounds on the membrane permeability and fluidity, but also the mobility of alpha-tocopherol molecule in membranes has been investigated using bilayer liposomes as the model membranes. Addition of alpha-tocopherol to membranes produced a greater decrease in the permeability and fluidity of rat liver phosphatidylcholine liposomes compared with egg yolk phosphatidylcholine liposomes. In dipalmitoylphosphatidylcholine liposomes, however, alpha-tocopherol was less effective, that is, the more unsaturated the lipids, the more they interact with alpha-tocopherol. 2,2,5,7,8-Pentamethyl-6-chromanol with no isoprenoid side chain and phytol without the chromanol moiety had no effect. The measurement of 13C NMR relaxation times revealed that the mobility of methyl groups on the aromatic ring of alpha-tocopherol in membranes is significantly restricted. In contrast, the methyl groups at positions 4'a and 8'a on the isoprenoid side chain have high degrees of motional freedom in the lipid core of membranes. Furthermore, it was found that alpha-tocopherol in membranes interacts with chromate ions added as potassium chromate outside the membranes, resulting in an increase in membrane fluidity. These results are compatible with those of the inhibitory effect on retinol-induced erythrocyte hemolysis. On the basis of the results obtained here, a possible mechanism for membrane stabilization by vitamin E is proposed.  相似文献   

5.
The effects of lidocaine on chemical composition of membrane phospholipids and membrane fluidity of Streptococcus mutans have been studied. Increasing concentra-tions of lidocaine induced both an increase in cardiolipin and a decrease in the degree of unsaturation of its fatty acid composition. A lidocaine-dependent decrease of membrane fluidity was observed from an electron spin resonance spectroscopic study. It was considered thal bacteria grown with lidocaine below its minimum inhibitory concentration resisted the effect of the drug by modifying phospholipid and fatty acid composition resulting in a decreased membrane fluidity.  相似文献   

6.
The effect of cholesterol on the membrane fluidity of human erythrocytes has been studied by electron spin resonance (ESR) spectroscopy, sensing the motion of androstane and fatty acid spin labeles in the cell membrane and in vesicles made from extracted phospholipids. 1. Androstane spin label (ASL) was incorporated from ASL-containing phospholipid vesicles into the erythrocyte membrane, essentially by a partition mechanism in proportion to their phospholipid contents. 2. On increasing the cholesterol or ASl content in the cell membrane, the spin label was gradually immobilized. 3. ASL motion in the cell membrane seemed to be primarily determined by the cholesterol/phospholipid molar ratio, regardless of the membrane protein-lipid interaction, as judged from the temperature effects on the ESR spectra of both membranes. 4. However, glutaraldehyde pretreatment induced considerable changes of the cholesterol-lipid interaction in the cell membrane, i.e., strong immobilization and cluster formation of ASL were observed.  相似文献   

7.
Spin-labeled aqueous dispersions of total phospholipid extracts from whole brains of hibernating hamsters and rats chronically consuming ethanol were compared with dispersions from control animals. Order parameter values and approximate rotational correlation times for the nitroxide spin labels indicated that ethanol consumption results in an adaptive decrease in bilayer membrane fluidity, while hibernation produces increases in fluidity. Since it has been proposed that changes in plasmenylethanolamine such as those seen with hibernation play a role in the homeoviscous adaptation of brain membranes, electron spin resonance studies using aqueous phospholipid dispersions containing equimolar mixtures of rat brain phosphatidylethanolamine and phosphatidylcholine, or synthetic dioleylphosphatidylcholine and dioleylphosphatidylethanolamine, and brain plasmenylethanolamine were performed. The molar amount of plasmenylethanolamine was varied within the ethanolamineglycerophospholipid fraction of each dispersion. Order parameter values of spin labels in liposomes containing brain phosphatidylcholine and phosphatidylethanolamine increased in parallel with increases in plasmenylethanolamine concentrations, indicating that fluidity was decreasing. Liposomes composed of synthetic dioleyl phospholipids exhibited biphasic changes in order parameter (S) values as plasmenylethanolamine replaced the diacyl form. Below 30% (mol%) plasmenylethanolamine, S values decreased, while above 30%, S values were seen to increase; indicating an initial fluidization, followed by a decrease in fluidity.  相似文献   

8.
The effect of two ubiquinones of different side chain length (Q-3; Q-9), on the fluidity of phospholipid vesicles has been investigated using stearic acid spin labels. While both oxidized quinones have a disordering effect on the lipid bilayers, the reduced forms behave in an opposite way, in that Q-3 enhances and Q-9 decreases the order of the bilayer. The ordering effect of reduced Q-3 and the attendant decreased motional freedom in the bilayer might be the result of the insertion and stacking of the quinone between the phospholipid molecules in the bilayer. Such insertion might be related to the incapability of short-chain quinones in restoring NADH oxidation in Q-depleted mitochondria.  相似文献   

9.
脂质过氧化对人红细胞膜脂流动性的影响   总被引:20,自引:3,他引:17  
研究枯稀过氧化氢/高铁血红素体系所产生的烷基过氧自由基对红细胞的损伤。测定了脂质过氧化的产物——丙二脂的生成,并证明阿魏酸钠对脂质过氧化的抑制。荧光偏振的结果指出,膜脂过氧化以后降低了膜脂的流动性。人红细胞用5DSA和16DSA标记并用ESR检测膜脂流动性,结果表明,序参数S几乎没有发生变化,旋转相关时间τ值的增加证明膜脂过氧化以后,疏水尾部的物理状态发生了改变。经脂质过氧化以后,红细胞膜中的不饱和脂防酸的减少,可能是降低膜脂流动性的原因之一。  相似文献   

10.
The effects of bilirubin on the membrane motion parameters of human erythrocyte membrane were determined by the spin labelled ESR method. It causes a decrease in the order parameter and an increase in the corresponding fluidity of the lipid molecules. Bovine serum albumin was found to inhibit effectively the effects due to bilirubin. The disturbance to the organization of membrane molecules by bilirubin as well as the protective effects of serum albumin are discussed on the basis of the experimental results.  相似文献   

11.
C S Lai  J S Schutzbach 《FEBS letters》1986,203(2):153-156
We have used ESR methods employing spin-labeled stearates to investigate the effects of dolichol on the motion of lipid molecules in phospholipid membranes of phosphatidylethanolamine and phosphatidylcholine. The ESR spectra show that the presence of dolichol affects the motion of the spin probes at carbon-16, but not at carbon-5. Similar results are obtained with phospholipid membranes comprising only phosphatidylcholine. It is suggested that dolichol molecules are present mainly in the lipid core region of phospholipid membranes.  相似文献   

12.
In a patient with lecithin: cholesterol acyltransferase deficiency, free cholesterol was markedly increased, and esterified cholesterol was diminished. In the patient's plasma, an increase in phosphatidylcholine (PC) and a decrease in sphingomyelin were observed. Concomitantly, an increase in a shorter acyl chain 16:0 was noted in PC, sphingomyelin and phosphatidylethanolamine (PE). In contrast to these results, longer chains such as 22:0 and 24:0 were decreased, especially in sphingomyelin. Unsaturated double bonds such as 18:1 was also increased in PC and PE. In the red-cell membrane lipids, the increase in free cholesterol was counteracted by an increase in PC and by a decrease in sphingomyelin and PE, reflecting changes in the patient's plasma lipids. Increased 16:0 (in PC) and decreased 18:0 and 24:0 were observed. The increased plasma free cholesterol due to metabolic defect (lecithin:cholesterol acyltransferase deficiency) led to decreased red-cell membrane fluidity. This effect appeared to be counteracted by changing phospholipid composition (increased PC and decreased sphingomyelin and PE), by increasing shorter chains (16:0), by decreasing longer chains (18:0 and 24:0) and by increasing unsaturated double bonds (18:2). These results can be interpreted as a self-adaptive modification of lecithin:cholesterol acyltransferase deficiency-induced red-cell membrane abnormalities, to maintain normal membrane fluidity. This speculation was supported by the ESR spin-label studies on the patient's membrane lipids. The normal order parameters in intact red cells and in total lipid liposomes were decreased if cholesterol-depleted membrane liposomes were prepared. Thus, the hardening effect of cholesterol appeared to be counteracted by the softening effects described above. Overall membrane fluidity in intact red cells of the lecithin:cholesterol acyltransferase-deficient patient was maintained normally, judged by order parameters in ESR spin-label studies.  相似文献   

13.
Liposomes characterized by membranes featuring diverse fluidity (liquid-crystalline and/or gel phase), prepared from egg yolk lecithin (EYL) and dipalmitoylphosphatidylcholine (DPPC), were doped with selected metalloporphyrins and the time-related structural and dynamic changes within the lipid double layer were investigated. Porphyrin complexes of Mg(II), Mn(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and the metal-free base were embedded into the particular liposome systems and tested for 350 h at 24°C using the electron spin resonance (ESR) spin probe technique. 5-DOXYL, 12-DOXYL, and 16-DOXYL stearic acid methyl ester spin labels were applied to explore the interior of the lipid bilayer. Only the 16-DOXYL spin probe detected evident structural changes inside the lipid system due to porphyrin intercalation. Fluidity of the lipid system and the type of the porphyrin complex introduced significantly affected the intermolecular interactions, which in certain cases may result in self-assembly of metalloporphyrin molecules within the liposome membrane, reflected in the presence of new lines in the relevant ESR spectra. The most pronounced time-related effects were demonstrated by the EYL liposomes (liquid-crystalline phase) when doped with Mg and Co porphyrins, whereas practically no spectral changes were revealed for the metal-free base and both the Ni and Zn dopants. ESR spectra of the porphyrin-doped gel phase of DPPC liposomes did not show any extra lines; however, they indicated the formation of a more rigid lipid medium. Electronic configuration of the porphyrin’s metal center appeared crucial to the degree of molecular reorganization within the phospholipid bilayer system.  相似文献   

14.
Abstract

In this study, the electron spin resonance (ESR) method was used to examine the effect of Amphotericin B (AmB) molecules on the fluidity of model membranes made of dipalmitoylphosphatidylcholine (DPPC). The changes occurring under increased AmB concentrations in the spectroscopic parameters of spin probes placed in liposomes were determined. Three probes were used, penetrating the membrane at different depths which allowed the changes in its fluidity to be found in the transverse section. A computer model of the surface layer of membrane, with AmB admixture, was developed and subjected to computer simulation. The effect of changing concentration of the admixture on the binding energy in the system of dipoles representing the surface of the membrane was examined. The ESR studies showed that the process of accumulation of AmB molecules in the membrane has two stages, marked by local maxima in the ESR spectra. The first appears for concentrations of ca. 0.25–0.5% and the second appears for ca. 2.5–3% AmB of its molar ratio to DPPC. The computer simulations permitted reconstructing the two-stage mechanism of interaction between the molecules and the membrane. They demonstrated that, at low concentrations, the AmB molecules position themselves flat on the membrane surface. After the threshold concentration is exceeded, they re-orientate to a vertical position. This process leads to the perforation of the membrane.  相似文献   

15.
An analysis of electron spin resonance (ESR) spectra from compositions along the liquid-ordered (L(o)) and liquid-disordered (L(d)) coexistence curve from the brain-sphingomyelin/dioleoylphosphatidylcholine/cholesterol (SPM/DOPC/Chol) model lipid system was performed to characterize the dynamic structure on a molecular level of these coexisting phases. We obtained 200 continuous-wave ESR spectra from glycerophospholipid spin-labels labeled at the 5, 7, 10, 12, 14, and 16 carbon positions of the 2nd acyl chain, a sphingomyelin spin-label labeled at the 14 carbon position of the amide-linked acyl chain, a headgroup-labeled glycerophospholipid, a headgroup-labeled sphingomyelin, and the cholesterol analogue spin-label cholestane all within multi-lamellar vesicle suspensions at room temperature. The spectra were analyzed using the MOMD (microscopic-order macroscopic-disorder) model to provide the rotational diffusion rates and order parameters which characterize the local molecular dynamics in these phases. The analysis also incorporated the known critical point and invariant points of the neighboring three-phase triangle along the coexistence curve. The variation in the molecular dynamic structures of coexisting L(o) and L(d) compositions as one moves toward the critical point is discussed. Based on these results, a molecular model of the L(o) phase is proposed incorporating the "condensing effect" of cholesterol on the phospholipid acyl chain dynamics and ordering and the “umbrella model” of the phospholipid headgroup dynamics and ordering.  相似文献   

16.
Electron spin resonance (ESR) spin label methods were used to study membrane fluidity of Chinese hamster ovary (CHO) cells grown on microcarriers and in suspension using 5-doxylstearic acid spin label as a probe. CHO cells grown on microcarriers had a more rigid cell membrane compared to CHO cells grown in suspension culture. CHO cells removed from the surface of the microcarriers by either trypsinization, EDTA treatment or osmotic shock had a membrane fluidity similar to that of CHO cells grown in suspension culture. Conversely, when the cells grown in suspension culture were attached and flattened on the surface of the microcarriers the fluidity decreased. Moreover, membrane fluidity of CHO cells grown on microcarriers changed as a function of the population density, whereas that of the cells in suspension did not. This implies that cell adhesion and/or cell-cell interactions influence the fluidity of the cell surface membrane.  相似文献   

17.
The interaction of protein with lipid in wheat gluten has been studied by electron spin resonance (ESR). The gluten in the flour suspension was spin-labeled with a fatty acid spin label (N-oxyl-4,4'-dimethyloxazolidine derivative of 5-ketostearic acid) and washed out from the flour. The ESR spectra of the spin label incorporated in gluten exhibited clearly separated parallel and perpendicular hyperfine splittings. The orientation of the gluten lipid and its fluidity showed temperature dependence. Phase transition was observed at 25°C. Compared with gluten, vesicles of the lipids extracted from flour were found to be in a less oriented, highly fluid state, and with much lower activation energy for rotational viscosity, while the reconstituted gluten, which was prepared by mixing purified gluten protein and the extracted lipids, had a lipid environment similar to that of gluten. The results indicate that the lipid was immobilized in the gluten matrix by strong interaction with protein.  相似文献   

18.
19.
The influence of tocopherol and its analogue (oxychroman) on the microviscosity of mitochondrial lipids was studied, using spin labels. The viscosity of the lipid bilayer was shown to enhance with the increase in the antioxidant content in the membrane. Small concentrations of alpha-tocopherol (10(-5)-10(-6) mol/l) were shown to increase, while large concentrations (10(-3)-10(-4) mol/l) decreased the fluidity of the lipid bilayer. The influence of alpha-tocopherol on fluidity of the lipid bilayer depending on its concentration could be realized in two ways: by direct influence on the lipid bilayer and via reception. It was shown that alterations in the viscosity of the lipid bilayer depend on chroman cycle of tocopherols, while the temperature of structural transfer and effective energy of activation depend on the lateral phytyl chain.  相似文献   

20.
Using the high resolution 1H-NMR spectroscopy and spin-probes the influence of alpha-tocopherol on lipid bilayer microviscosity has been studied. It has been established that alpha-tocopherol shows the cholesterol-like action on the physical state of lipid bilayer: alpha-tocopherol increase microviscosity of unsaturated bilayers and decrease microviscosity of saturated bilayers. The character of alpha-tocopherol action is determined by the fatty acidic lipid composition but does not depend on the polar group structure of phospholipid molecule as cholesterol-like action of alpha-tocopherol is found itself in liposomes prepared both from phosphatidylcholine and phosphatidylethanolamine. Analog of alpha-tocopherol without phytol chain 2,2,5,7,8-penthamethyl-6-oxychroman does not show the cholesterol-like action as it is not able to disorder the saturated bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号