首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present investigation we localized binding sites for the lectins WGA (wheat germ agglutinin), RCA I (Ricinus communis agglutinin), LFA (Limax flavus agglutinin) and SBA (soya bean agglutinin) in the 7-day-old mouse embryo at the ultrastructural level. Lectin binding sites were localized on formaldehyde fixed embryos, embedded in LR-Gold, using gold-labelled lectins. Binding sites for WGA and RCA I were observed at the surface of the embryonic ectoderm oriented towards the proamnion cavity and the outer surface of the extraembryonic and the embryonic endoderm. Staining for SBA and LFA binding sites was seen in the basement membrane of the ectoderm. Moreover, binding sites for LFA were observed in the nucleoli of cells of the ectodermal, the mesodermal and the endodermal layer and in free ribosomes located in the cytoplasm of these cells.  相似文献   

2.
Since distinguishing malignant from benign cells in pleural effusions can be difficult, with reactive mesothelial cells simulating adenocarcinoma cells, the binding patterns of a battery of lectins on cells in eight benign and eight malignant effusions were studied using the avidin-biotin peroxidase complex method. The following lectins were used: concanavalin A, Dolichos biflorus agglutinin, peanut agglutinin, Phaseolus vulgaris agglutinin, Ricinus communis germ agglutinin, soybean agglutinin, Ulex europeaus agglutinin (UEA) and wheat germ agglutinin. Several patterns of staining were seen with the lectins, but only UEA was helpful in distinguishing between benign and malignant effusions. Sixty percent of the adenocarcinomas stained with UEA, whereas none of the cells in the benign effusions did. These results imply that UEA positivity is indicative of carcinoma and can be useful in separating reactive or atypical mesothelial cells from adenocarcinoma cells.  相似文献   

3.
Fluorescent lectins were used to study the chemical nature of carbohydrate moieties present on the surface of female and male germ cells isolated from mouse gonads during fetal and early posnatal development. Concanavalin A (ConA), lens culinaris agglutinin (LCA), ricinus communis agglutinin (RCAI) and wheat germ agglutinin (WGA) bound intensely to the germ cell plasma membrane at all stages studied. Other lectins such as ulex europaeus agglutinin (UEAI) and agglutinin (SBA) did not bind or bound moderately (SBA to female germ cells only). Distinct developmental-related changes were observed when female germ cells were labeled with fluorescein-conjugated peanut agglutinin (PNA) or dolichos biflorus agglutinin (DBA). DBA and PNA binding was absent or weak in fetal female and male germ cells, but became intensely positive in oocytes in the immediate postnatal period. The percentage of oocytes stained with DBA increased during the first three days after birth, and from day 3–4 onwards all oocytes were strongly labeled. I suggest that these changes in lectin binding reflect changes in biochemical structure of the oocyte surface related to differentiative events occurring in the mouse ovary immediately after birth.  相似文献   

4.
The ability of seven lectins to bind to newt epidermal cells and influence their motility was examined. Of the seven fluoresceinated lectins applied to frozen sections containing intact newt skin and migrating epidermis (wound epithelium), only Con A (concanavalin A), WGA (wheat germ agglutinin), and PNA (peanut agglutinin) produced detectable epidermal fluorescence. Con A and WGA each heavily labeled all layers of intact epidermis, but PNA bound only to the more superficial layers. In contrast to a single population of labeled cells in migrating epidermal sheets after treatment with Con A, there were both labeled and unlabeled cells after exposure to either WGA or PNA. The wound bed was labeled by both Con A and WGA, but not by PNA. DBA (Dolichos bifloris agglutinin), RCA I (Ricinus communis agglutinin), and UEA (Ulex europaeus agglutinin), did not produce significant fluorescence with either migrating or intact epidermis. In general, inhibitory effects on epidermal motility correlated with the binding studies. Thus, Con A, WGA, and PNA, the lectins which clearly bound to the epidermis, all produced a concentration-dependent depression in the rate of epidermal wound closure. RCA was somewhat paradoxical in that it was moderately inhibitory despite showing essentially no binding. The effects of SBA and UEA were equivocal. DBA had no effect. These results indicate that the inhibition of motility produced by Con A that we have described previously is not peculiar to this mannose-binding lectin, but is shared by at least one lectin with an affinity for D-GlcNAc (WGA), and one with an affinity for B-D-Gal(1-3)-D-GalNAc (PNA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The physicochemical and binding properties of succinylated wheat germ agglutinin are described in comparison with these of unmodified wheat germ agglutinin. Succinylated wheat germ agglutinin is an acidic protein with a pI of 4.0 +/- 0.2 while the native lectin is basic, pI of 8.5. The solubility of succinylated wheat germ agglutinin is about 100 times higher than that of the unmodified lectin at neutral pH. Both lectins are dimeric at pH down to 5, and the dissociation occurs at pH lower than 4.5. The binding of oligosaccharides of N-acetylglucosamine to both lectins is very similar on the basis of fluorescence and phosphorescence studies. The minimal concentration required to agglutinate rabbit red blood cells is about 2 microgram/ml with both lectins and the concentrations of N-acetylglucosamine and di-N-acetylchitobiose which inhibit agglutination are similar with both lectins. The number of succinylated wheat germ agglutinin molecules bound to the surface of mouse thymocytes was ten times lower than that of the unmodified lectin although the apparent binding constant was only slightly different between the two lectins. The dramatic decrease of the apparent number of cell surface receptors upon succinylation of the lectin is discussed on the basis of the decrease of the isoelectric point and of the acidic properties of the cell surface.  相似文献   

6.
We studied the effects of different lectins on the adhesive properties of baby hamster kidney (BHK) cells. The purpose of these studies was to learn more about the cell surface receptors involved in cell adhesion. Three adhesive phenomena were analyzed: 1) the adhesion of BHK cells to lectin-coated substrata; 2) the effects of lectins on the adhesion of cells to substrata coated by plasma fibronectin (pFN); and 3) the effects of lectins on the binding of pFN-coated beads to cells. Initial experiments with fluorescein-conjugated lectins indicated that concanavalin A (Con A), ricinus communis agglutinin I (RCA I), and wheat germ agglutinin (WGA) bound to BHK cells but peanut agglutinin (PNA), soybean agglutinin (SBA), and ulex europaeus agglutinin I (UEA I) dod not bind. All three of the lectins which bound to the cells promoted cell spreading on lectin substrata, and the morphology of the spread cells was similar to that observed with cells spread on pFN substrata. Protease treatment of the cells, however, was found to inhibit cell spreading on pFN substrata or WGA substrata more than on Con A substrata or RCA I substrata. In the experiment of cells with Con A or WGA inhibited cell spreading on pFN substrata, but RCA I treatment had no effect. Finally, treatment of cells with WGA inhibited binding to cells of pFN beads, but neither Con A nor RCA I affected this interaction. These results indicate that the lectins modify cellular adhesion in different ways, probably by interacting with different surface receptors. The possibility that the pFN receptor is a WGA receptor is discussed.  相似文献   

7.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRAT at 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diamino-benzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A greater than PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WAG, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

9.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

10.
Specific binding of fluoresceinated succinyl-concanavalin A, wheat germ agglutinin, and ricin to untreated and trypsinized bloodstream forms of Trypanosoma brucei rhodesiense was quantitated by flow cytofluorimetry, and sites of lectin binding were identified by fluorescence microscopy. All three lectins only bound to the flagellar pocket of untreated parasites. When parasites were trypsinized to remove the variant surface glycoprotein coat, new lectin binding sites were exposed, and specific binding of all three lectins increased significantly. New specific binding sites for succinyl-concanavalin A and wheat germ agglutinin were present along both the free flagellum and flagellar adhesion zone and were uniformly distributed on the parasite surface. However, ricin did not bind uniformly on the surface and did not stain the free flagellum of trypsinized cells. Ricin only bound to the flagellar adhesion zone of trypsinized cells and of cells that had been treated with formaldehyde prior to staining. Electron microscopy of cells exposed to ricin-colloidal gold complexes revealed that that ricin binding was restricted to the anterior membrane of the flagellar pocket of untrypsinized cells and to this portion of the flagellar pocket and the cell body membrane in the flagellar adhesion zone of trypsinized cells. Evidence that these membranes constitute a functionally important membrane microdomain is reviewed.  相似文献   

11.
Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternae of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

12.
We have examined the role of cell surface glycoconjugates during mouse blastocyst maturation, hatching, attachment, and outgrowth by monitoring the influence of six lectins on blastocyst development in vitro. Two lectins, concanavalin A and wheat germ agglutinin were toxic to blastocysts at the concentrations used. Bandierea simplicifolia lectin 1 (BSL-1) induced abnormal growth, developmental arrest at the hatching stage, and some disruption of cell contacts. Culture with Lotus tetragonolobus lectin-1 (LTA-1) also disrupted cell contacts and caused developmental arrest. The remaining lectins, Dolichos biflorus agglutinin (DBA) and Ulex europaeus agglutinin (UEA), retarded blastocyst hatching and outgrowth but did not induce any major defects, although differentiation of the inner cell mass was limited by both. This study demonstrates that very low concentrations of lectins can disrupt blastocyst development, suggesting that exposed surface saccharide moieties may be involved in interactions between blastomeres and their environment.  相似文献   

13.
Follicle stimulating hormone (FSH) stimulates “colony formation” by immature rat Sertoli cells in primary culture. “Colony formation” involves cell aggregation. Consequently, the involvement of cell surface glycoproteins in cell aggregation was investigated by treatment of dissociated 10-day rat testis cells with sodium metaperiodate, glucosamine, various lectins, tunicamycin, and puromycin. Treatment of control cultures with 5 μM glucosamine stimulated cell aggregation; however, glucosamine did not affect FSH-stimulated cultures. Treatment of dissociated testis cells with 5 μM sodium metaperiodate, 10 μg/ml castor bean agglutinin (ricin), or 2.5 μg/ml horseshoe crab agglutinin inhibited FSH stimulation of cell aggregation. A similar inhibition of cell aggregation was observed following addition of 10 μg/ml puromycin or tunicamycin to culture media from 0- to 18-hours incubation. Treatment with soybean agglutinin, concanavalin A, or wheat germ agglutinin had no effect. The galactose-specific lectins, Ricin, Ricinus communis agglutinin I, and Bendeirea simplicifolia agglutinin, inhibit the FSH stimulation of 3H-aminoacid incorporation as well as cell aggregation in 24-hour cultres. The inhibition of cell aggregation by sodium metaperiodate treatment was reversed with 5 μM sodium borohydride reduction. Sodium metaperiodate treatment did not alter cell viability (as assayed with trypan blue dye exclusion), did not alter cell attachment, nor significantly decrease 125I-FSH binding by cultured testis cells. The results suggest that FSH stimulation of cell aggregation by immature rat Sertoli cells requires cell surface glycoprotein interactions. Furthermore, the specificity of lectin inhibition suggests that glycoproteins with terminal galactose and sialic acid residues are required for the FSH induction of cell aggregation.  相似文献   

14.
A high-resolution technique has been used to study differentiation-related and leukemia-associated glycoproteins. Cells are labeled with the membrane-impermeable probe sulfo-N-hydroxysuccinimidyl-biotin. Nonionic detergent extracts are subjected to affinity chromatography on a number of immobilized lectins and after polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE) and western transfer, the biotin-labeled glycoproteins are visualized by using avidin-horseradish peroxidase and 4-chloronaphthol. With the aid of the lectins concanavalin A, Dolichos biflouros agglutinin, Lens culinaris hemagglutinin, peanut agglutinin, pokeweed mitogen, Ricinus communus agglutinin I, soybean agglutinin, Ulex europeus agglutinin I (UEA), and wheat germ agglutinin, each purifies different glycoprotein subsets from the same cell type. Mature cells of distinct hematopoietic lineages differ considerably in their cell surface glycoprotein patterns. This technique was used to analyze the glycoproteins of human leukemia cells before and after the induction of differentiation. K562 cells differentiated along different lineages after treatment with phorbol 12-myristate 13-acetate, sodium butyrate, dimethyl sulfoxide, or hemin. Limited specific alterations were observed with a number of lectins when K562 erythroleukemia cells were induced to differentiate. Among these, a number of bands were identified that were either lost or appeared after induction of differentiation with all four agents. In contrast, the glycoproteins bound by UEA were drastically diminished after induction of differentiation, and the remaining UEA-bound glycoproteins bore little resemblance to those of the cells before treatment. This high-resolution technique may be useful as a general method for the examination of cell surface glycoprotein differences. Once specific glycoprotein alterations are detected, lectin affinity chromatography and SDS-PAGE allow purification of antigens for the production of monoclonal antibodies.  相似文献   

15.
Affinity chromatography on Sepharose-fetuin columns was used in a single step procedure to isolate the lectins concanavalin A, Favin, phytohemagglutinin, wheat germ agglutinin, and Limulus hemagglutinin. New lectins with unknown binding specificities were also purified by the same procedure from extracts of small California white beans, Idaho red beans, and white pea beans. The purified lectins exhibited different cell surface mapping properties on erythrocytes, lymphocytes, and sperm cells. It was particularly striking that neither 131I-labeled concanavalin nor 125I-labeled wheat germ agglutinin had any effect on the binding of the other to mouse spleen cells. In accord with this observation, gel electrophoretic analysis of radiolabeled lymphocyte receptors for these two lecithins yielded different patterns. These results indicate that highly purified lectins prepared by affinity chromatography on the same adsorbent can possess strikingly different binding specificities for cell surface receptors.  相似文献   

16.
To examine possible changes in cell surface carbohydrates, fluorescent lectins were applied at various times during differentiation of neural crest cells in vitro. The pattern and intensity of binding of several lectins changed as the crest cells developed into melanocytes and adrenergic cells. Considerable amounts of concanavalin A (Con A) and wheat germ agglutinin (WGA) bound to all unpigmented cells throughout the culture period. Melanocytes, however, bound much less of these lectins. Soy bean agglutinin (SBA), unlike Con A and WGA, only bound later in development to unpigmented cells at about the time when catecholamines were detected histochemically. Binding of SBA could be induced in younger cultures by pretreating the cells with neuraminidase. Melanocytes, however, did not bind detectable amounts of SBA even if treated with neuraminidase. The SBA-binding sites were often concentrated on cytoplasmic extensions and on contact points between neighboring cells, even when receptor mobility was restricted by prefixation of the cells or adsorption of lectin at 0 degrees C. All three lectins bound to cell processes resembling nerve fibers in particularly high amounts.  相似文献   

17.
The major surfactant-associated protein is a potent inhibitor of surfactant phospholipid secretion from isolated type II cells. Since the major surfactant-associated protein contains a carboxy terminal polypeptide domain which is homologous to the lectin-like liver mannose-binding protein, we tested whether lectins inhibit surfactant phospholipid secretion from rat alveolar type II cells. Concanavalin A, wheat germ agglutinin and Maclura pomifera agglutinin were potent inhibitors of surfactant phospholipid secretion. When adenosine 5'-triphosphate (ATP) was utilized as a secretagogue, the IC50 values for inhibition of surfactant phospholipid secretion were 5.10(-7) (wheat germ agglutinin), 1.10(-6) (concanavalin A) and 2.5.10(-5) M (M. pomifera agglutinin). Similar results were obtained when 12-O-tetradecanoylphorbol 13-acetate was utilized as a secretagogue: IC50 values of 1.10(-6) M for concanavalin A and wheat germ agglutinin and 2.5.10(-5) M for M. pomifera agglutinin. Hapten sugars were utilized to antagonize the inhibitory effect of the lectins. N-Acetyl-D-glucosamine significantly reversed inhibition of phospholipid secretion by wheat germ agglutinin in a dose-dependent fashion and methyl alpha-D-mannoside significantly reversed inhibition of phospholipid secretion by concanavalin A. N-Acetyl-D-galactosamine had no significant effect on inhibition of secretion produced by any of the lectins. The inhibitory effect of the lectins did not appear to be due to cytotoxicity since lactate dehydrogenase was not released above control levels and the inhibition of the surfactant phospholipid secretion by wheat germ agglutinin could be reversed after treatment of cells with wheat germ agglutinin by washing the lectin from the cells followed by treatment of the cells with ATP. These studies demonstrate a direct inhibitory effect of plant lectins on phospholipid secretion from type II cells in vitro.  相似文献   

18.
We explored the luminal surface of liver sinus endothelium for the presence of lectin receptors and lectinlike substances capable of interacting with specific sugars. We used ferritin-conjugated lectins and glycosylated ferritins as probes. Incubation of small blocks of rat liver with these probes led to the binding of concanavalin A (on A), Ricinus communis (RCA), wheat germ agglutinin (WGA), phytohemagglutinin (PHA) and mannosyl ferritins to the luminal surface of endothelium. Ulex europaeus agglutinin I (UEA), fucosyl, galactosyl, and chitobiosyl-ferritins did not bind. The binding was patchy and sparse in the case of Con A and mannosyl-ferritins but uniform for others. Binding density did not correlate with hemagglutinability of lectins, suggesting that the difference in the hemagglutinability of these lectins did not account for the difference in their binding densities. Bindings were all completely inhibited in the presence of excess specific sugar inhibitors, indicating the specificity of binding. The distribution of binding was segregated on the endothelial membrane, being heaviest on luminal pits. To define the functional significance of this segregated distribution, sinus endothelium was compared to portal-vein endothelium in which endothelial fenestrations are also seen; and these fenestrations as well as pits may be covered by a thin diaphragm. Of interest was the total absence of binding to the diaphragm. The significance of these findings is discussed.  相似文献   

19.
Novikoff hepatocellular carcinoma cells were radioiodinated by a cell surface-specific method using lactoperoxid ase/125I. The iodinated proteins were solubilized in 0.5% Nonidet P-40 and subjected to affinity chromatography on Sepharose-conjugated lectins (Ricinus communis agglutinins I or II, soybean agglutinin, concanavalin A, or wheat germ agglutinin) and analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Almost all the iodinated proteins bound to one or more of the Sepharose-conjugated lectins, presumptive evidence that these peptides are glycosylated. Lectin affinity chromatography resolved defined subsets of iodinated glycoproteins and suggested that certain glycoproteins could be fractionated on the basis of heterogeneity of their heterosaccharide moieties. Incubation of the iodinated cells with neuraminidase resulted in increased binding of iodinated proteins to Sepharose-conjugated Ricinus communis agglutinins I and II and soybean agglutinin and decreased binding to Sepharose-conjugated wheat germ agglutinin. Binding of iodinated proteins to concanavalin A was unaffected by neuraminidase treatment of the cells. These studies demonstrate the utility of lectins for the multicomponent analysis of plasma membrane proteins.  相似文献   

20.
Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these lectins, RCA-I, bound to the root hair tips in the mature and emerging hair zones and also to sites at which root hairs were only just emerging. There was no RCA-I binding to immature trichoblasts. Preincubation of these lectins with their hapten sugars eliminated all types of root cell binding. By using a microinoculation technique, preincubation of the root surface with RCA-I lectin was found to inhibit infection and nodulation by Rhizobium spp. Preincubation of the root surface with the RCA-I hapten beta-d-galactose or a mixture of RCA-I lectin and its hapten failed to inhibit nodulation. Application of RCA-I lectin to the root surface caused no apparent detrimental effects to the root hair cells and did not prevent the growth of root hairs. The lectin did not prevent Rhizobium sp. motility or viability even after 24 h of incubation. It was concluded that the RCA-I lectin-specific sugar beta-d-galactose may be involved in the recognition or early infection stages, or both, in the Rhizobium sp. infection of M. atropurpureum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号