首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated that the alpha-subunit of human nongastric H,K-ATPase (Atp1al1) can assemble with the gastric H,K-ATPase beta-subunit (betaHK) into an active ion pump upon coexpression in Xenopus oocytes. To gain insight into enzymatic functions, we have analyzed the Atp1al1-betaHK complex using a baculovirus expression system. The efficient formation of the functional Atp1al1-betaHK complex in membranes of Sf-21 insect cells was obtained upon co-infection with recombinant baculoviruses expressing Atp1al1 and betaHK. Expression of either protein alone did not produce active ATPase. The effects of K(+), Na(+), pH, and ATP and inhibitors on ATPase activity of the recombinant Atp1al1-betaHK complex were analyzed. The Atp1al1-betaHK complex was shown to exhibit significant ATPase activity in nominally K(+)-free medium. The addition of K(+) stimulated the ATP hydrolysis up to 3-fold with K(m) approximately 116 microM K(+). The ATPase activity was moderately sensitive to ouabain and to SCH 28080 with apparent K(i) values in K(+)-free medium of approximately 64 microM and approximately 93 microM, respectively. Potassium exhibited strong antagonism toward both inhibitors. Assays of the ouabain-sensitive ATPase activity revealed inhibitory effects of Na(+) with the apparent K(i) of approximately 24 mM in the absence of added K(+) and with K(i) within the range of 60-70 mM in the presence of > or = 1 mM K(+). Thus, the human nongastric H,K-ATPase represented by the recombinant Atp1al1-betaHK complex exhibits enzymatic properties of K(+)-dependent ATPase sensitive to ouabain, SCH 28080, and Na(+). It differs from Na,K-ATPase in cation dependence and differs from gastric H,K-ATPase and Na,K-ATPase in sensitivity to inhibitors.  相似文献   

2.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

3.
ATPase and cholinesterase activities in the homogenate of the frog nerve and membrane Na,K-ATPase preparation of the bovine brain were investigated. Preliminary treatment of the nerve and the preparation by acetylcholine solution (10(-6)--10(-7) M) enhanced their Na,K-ATPase activity and reduced their cholinesterase activity. Possible mechanisms of this phenomenon are discussed.  相似文献   

4.
T K Vysochina 《Tsitologiia》1978,20(3):357-360
Action of adrenaline on ATPase activity of ground squirrel synaptosomes in vitro at 37 degrees and 17 degrees C was studied. It has been shown in experiments in vitro at 37 degrees C that adrenaline in a concentration of 5.10(-4) M influenced Mg and Na, K-ATPase of the synaptosomes in ground squirrel brain. The inhibition (42-72%) of Na, K-ATPase in the synaptosomes of the brain was seen during hibernation and in summer. The inhibition of Mg-ATPase (50%) was observed only in summer. The effect of adrenaline on the activity of Na, K-ATPase of synaptosome was seen in vitro as well as at 17 degrees (a 50% inhibition). It was shown that adrenaline in vitro at a concentration of 5.10(-4) M inhibited ATPases more than noradrenaline.  相似文献   

5.
The aldosterone binding in isolated distal convoluted and cortical collecting tubules of renal nephrons and the influence of hormonal induction on the Na, K-ATPase activity in membrane fraction of kidney cortex were studied in 10-day- and 2-month-old rats. No reliable difference in aldosterone-specific binding was revealed (0.26 +/- 0.04 and 0.22 +/- 0.03 fmol/mm of tubule length, respectively, at the age of 10 days and 2 months). It was found that Na, K-ATPase activity increased with age from 0.39 +/- 0.06 to 0.72 +/- 0.10 mumol Pi/mg of protein.1 hour.100 microliters. Aldosterone induction caused approximately a 3-fold increase of the enzyme activity in both age groups comparing to the control level. Co-induction of aldosterone and spironolactone resulted in a 50% decrease of Na, K-ATPase activity in adult rats, but did not influence that in young rats. The revealed age-related differences in the mechanism of hormonal Na, K-ATPase regulation are supposed to underlie the absence of physiological reaction of the kidney to aldosterone in early postnatal ontogenesis.  相似文献   

6.
Activation of rat cerebellum granule cells by N-methyl-D-aspartate (NMDA, 10(-4)-10(-3) M) results in progressive increase in reactive oxygen species (ROS) and suppression of the ouabain-sensitive part of Na/K-ATPase activity. When Na/K-ATPase was inhibited by high ouabain concentrations (10(-5)-5 x 10(-4) M), an increase in stationary ROS level in neuronal cells was noted, this effect being attenuated by NMDA antagonists, MK-801 and D-AP5. It is concluded that in cerebellum neurons, ouabain-resistant Na/K-ATPase is responsible for suppression of intracellular level of ROS, which, in turn, inhibit ouabain-sensitive Na/K-ATPase.  相似文献   

7.
The kinetic properties of intact and digitonin-treated Na,K-ATPase from bovine brain were studied. The temperature dependence curve for the rate of ATP hydrolysis under optimal conditions (upsilon 0) in the Arrhenius plots shows a break at 19-20 degrees. The temperature dependence curves for Km' and Km" have breaks at the same temperatures, while the Arrhenius plot for V is linear. The value of the Hill coefficient (nH) for ATP at 37 degrees is variable depending on ATP concentration, i. e. it is less than 1 at ATP concentrations below 50 mkM and is increased up to 3.2 at higher concentrations of the substrate. At high ATP concentrations the value of nH depends on temperature, falling down to 2.1 at 23 degrees and then down to 1 within the temperature range of 21-19 degrees. A further decrease in temperature does not significantly affect the nH value. Digitonin irreversibly inhibits Na, K-ATPase. ATP hydrolysis is more sensitive to the effect of the detergent than is nNPP hydrolysis, i. e. after complete inhibition of the ATPase about 40% of the phosphatase activity are retained. Treatment of Na,K-ATPase by digitonin results in elimination of the breaks in the Arrhenius plots for upsilon 0, Km' and Km", whereas the temperature dependence plot of V remains linear. Simultaneously digitonin eliminates the positive cooperativity of the enzyme for ATP. It is assumed that Na, K-ATPase from bovine brain is an oligomer of the (alpha beta) 4 type. Digitonin changes the type of interaction between the protomers within the oligomeric complex by changing the lipid environment of the enzyme or the type of protein -- lipid interactions.  相似文献   

8.
Preincubation of rat brain homogenates with acetylcholine (ACh) in concentrations of 10(-3)-10(-5) M for 60 minutes produces an essential increment (15-30%) in activity of microsomal Na, K-ATPase. Analogous effect was exerted by the acetylcholinesterase inhibitor eserine (10(-5)-10(-6) M). Acetylcholine has no effect in the presence of actinomycin D. Dialysis of microsomes isolated from the homogenate incubated with ACh leads to a decrease in the enzyme activity and release to the dialysate of low-molecular factor activating Na, K-ATPase of intact microsomes. The latter fact evidences the ACh-induced synthesis of activating factor and inhibition of Na, K-ATPase synthesis. After the animals are administered eserine (0.2-0.4 mg/kg), isolated microsomes show a reduced level of Na, K-ATPase (by 10-15%). Dialysis of microsomes leads to an appreciable elevation (by approximately 40%) of the enzyme activity and release into the dialysate of the inhibitory factor. The differences in the effects of eserine in vivo and in vitro suggest that during the impairment of brain integrity certain effects are excluded from the processes of the control over Na, K-ATPase activity. One of these may involve the impairment of intercellular interactions, for example, the disappearance of the effect on cholinoceptive cells of internuncial neurons that release inhibitory neurotransmitters (catecholamines).  相似文献   

9.
The mechanism of light-induced changes in the activity of Na,K-ATPase from plasma membranes (PM) of photoreceptor cells was studied in vitro. Illumination resulted in inhibition of the ATPase activity and an increase of 18O exchange between water and Pi. The maximum light effect was revealed when the PM contained both the inner segments of the rods (RIS) and rod outer segments (ROS) of the photoreceptor cells. Lipid peroxidation stimulated by the FeSO4+ascorbate system induced a decrease of the ATPase activity. Antioxidants (ionol, Na2SeO3, vitamin E) prevented the effect of the lipid peroxidation products on NA,K-ATPase and the photoinduced changes of the enzyme activity. It is supposed that the photoinduced changes of the Na,K-ATPase activity in vitro are due to lipid peroxidation of photoreceptor PM.  相似文献   

10.
The effect of desoxycorticosterone (DOC) on Na, K-ATPase activity was studied in vivo and in vitro on microsomal rat brain fractions. An hour after intramuscular administration of DOC a noticeable increase in the enzyme activity was observed. Preincubation of microsomal brain fractions with 5 and 15 mkg/ml of DOC caused a decrease in Na, K-ATPase activity, with the results evident 3-5 minutes after the addition of the hormone into the incubation medium. The idea of a two-phase hormonal effect is suggested. It is likely that desoxycorticosterone effect is realized both by the direct influence, on Na, K-ATPase of the brain plasma membrane and by the influence on the biosynthesis.  相似文献   

11.
Chronic emotional pain stress in rats causes disturbances of the cardiovascular system function (increase in arterial pressure and in heart rate), typical of neuroses-like state, and changes of the vegetative nervous system reactivity tested with functional load by two-hour hypokinesis. Increase in spleen weight is observed as well as a tendency to adrenals weight increase, a decrease of Na, K-ATPase activity and activation of lipid peroxidation in cortical and hippocampal homogenates. Administration of F-801 antioxidant according to therapeutic scheme after the end of stress action, restores normal function of the cardiovascular system, normal reactivity of the vegetative nervous system, decreases adrenals weight and increases the weight of thymus and also normalizes ATPase activity and the level of lipid peroxidation. A backward correlation dependence of the Na, K-ATPase activity on the level of malondialdehyde in the brain tissue has been established.  相似文献   

12.
Three membrane-bound adenosine triphosphatases were investigated for homology in the sequence of four amino acids about the active site of phosphorylation. The ATPases were as follows: sodium-potassium-dependent ATPase from dog kidney, Na,K-ATPase; hydrogen-potassium-dependent ATPase from hog gastric mucosa, H,K-ATPase, an ATPase similar to Na,K-ATPase; and an ATPase activity in the plasma membrane of corn, Zea mays, roots (CR-ATPase), a higher plant ATPase. A membrane preparation containing an ATPase of Acholeplasma laidlawii, a prokaryote, (AL) was also investigated. For most of the experiments, the preparations were phosphorylated from [gamma-32P]ATP, denatured in acid, and subjected to proteolytic digestion. Radioactive phosphopeptides were separated by high voltage paper electrophoresis and characterized by sensitivity to chemical reagents. In gastric H,K-ATPase, the aspartate residue at the active site was determined directly by labeling with [3H]borohydride. A common sequence around the active site was found for Na,K-ATPase, H,K-ATPase, and CR-ATPase. This sequence, -Cys-(Ser/Thr)-Asp(P)-Lys-, is similar to that in the calcium ion-transport ATPase of sarcoplasmic reticulum. The AL membrane preparation showed an acylphosphate that turned over rapidly after a chase of labeled membranes with unlabeled ATP. The corresponding sequence was different from that of the three ATPases. An acylphosphate was on two polypeptides with molecular weights of about 80,000 and 60,000; these appear not to correspond to subunits of a Na+-stimulated ATPase in this organism (Lewis, R. N. A. H., and McElhaney, R. N. (1983) Biochim. Biophys. Acta 735, 113-122).  相似文献   

13.
Our original attempt was to examine whether inhibition of Na/H exchange in proximal tubule would affect the expression of basolateral membrane protein Na,K-ATPase. Three amiloride analogues were tested within the range of 10(-6) M to 10(-4) M in primary cultures of proximal tubule cells. Only ethylisopropyl amiloride (EIPA) dose-dependently downregulated Na,K-ATPase activity in cultured proximal tubule cells. The time course study revealed that EIPA (10(-4) M) significantly decreased Na,K-ATPase alpha- and alpha-mRNA abundance within 4 hr and suppressed Na,K-ATPase alpha- and beta-mRNA levels by 76.3 +/- 4.5% and 85.5 +/- 5.8%, respectively, within 24 hr. The decrease in Na,K-ATPase mRNA was followed by a decrease in Na,K-ATPase activity by 22.5 +/- 10.8% and 48.8 +/- 5.9% within 12 and 24 hr, respectively, which could be reflected by a coordinate decrease in levels of both alpha- and mature beta-protein. The cell viability was not affected until 20 hr of EIPA treatment, when an increase in LDH release and cell detachment was observed. Because EIPA rapidly decreased intracellular pH (pHi) to 6.7 within 2 hr and raising pHi to 6.6 by metabolic acidosis could not elicit changes in Na,K-ATPase activity, EIPA-induced downregulation of Na,K-ATPase should not be mediated through H+. In view of the time course of EIPA effects on Na,K-ATPase subunit mRNA, protein, activity and cell toxicity, the cytotoxic effect is likely resulted from a decrease in Na,K-ATPase activity. Take together, we conclude that EIPA induces downregulation of Na,K-ATPase expression via both pre- and post-translational mechanisms, which confers cytotoxic effects on proximal tubule cells.  相似文献   

14.
The sodium pump or Na,K-ATPase, maintains the Na+ and K+ gradients across eukaryotic cell membranes at the expense of ATP. Incubation of purified canine renal Na,K-ATPase with 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) inhibited the ATPase activity. Both the labeling of the protein and the loss of ATPase activity were prevented by co-incubation with ADP (acting as an ATP analog) or KCl. Only the alpha-subunit was labeled by SITS. The alpha-subunit from the inhibited enzyme was extensively digested with trypsin, and SITS-labeled peptides were purified by reverse-phase HPLC and sequenced. The amino acid sequence determined, His-Leu-Leu-Val-Met-X-Gly-Ala-Pro-Glu, indicated that SITS modifies Lys-501 (X) on the alpha-subunit of Na,K-ATPase.  相似文献   

15.
S Takeo  M Sakanashi 《Enzyme》1985,34(3):152-165
Membrane-bound adenosinetriphosphatase (ATPase) activities of the sarcolemma-enriched fraction from bovine aorta were characterized. The membranes, isolated by a sucrose density gradient method, were enriched about 31-fold in sodium- and potassium-stimulated, magnesium-dependent ATPase (Na,K-ATPase) activity, and about 8-fold in 5'-nucleotidase activity compared to the homogenate, suggesting that the isolated membranes were substantially enriched with the sarcolemma. The membranes exhibited about 31, 33 and 42 mumol Pi/mg protein/h of Na,K-ATPase, magnesium-dependent ATPase and calcium-dependent ATPase activities, respectively, in the presence of 4 mmol/l ATP. The sarcolemma-enriched membranes required considerably high concentrations of well-known inhibitors for Na,K-ATPase such as vanadate (more than 1 mumol/l), lanthanum (more than 1 mmol/l) and calcium (10 mmol/l), to induce a significant inhibition in the Na,K-ATPase activity. Treatments of the membrane with physical disruptions and sodium dodecyl sulfate or deoxycholate reduced the total Na,K-ATPase activity, and did not expose fully the ouabain sensitivity of the Na,K-ATPase. These results indicate that there are marked differences in the properties of the ATPase between vascular smooth muscle sarcolemma and cardiac sarcolemma.  相似文献   

16.
The centrally acting drugs belonging to different groups--fluphenazine, trifluperidol, phthoracyzine, imipramine, diazepam, apomorphine, fentanyl, diphneylhydantoin, nonachlazine displayed in vitro an inhibitory effect on the uptake of gamma-aminobutyric acid by rat brain synaptosomes. A decrease in the activity of synaptosomal Na,K-ATPase was found in most cases. Drugs that failed to alter GABA uptake were as a rule found to be ineffective in relation to the enzyme activity (carbidine, morphine). GABA uptake was not affected by certain drugs inhibiting the Na,K-ATPase activity (azabuperon, tetrabenazine). It is supposed that the drugs used had at least two possible sites of action - Na,K-ATPase itself and hypothetic GABA transmembrane carrier.  相似文献   

17.
Recently, we reported that dietary ethyl docosahexaenoate (Et-DHA) intake decreases the level of membrane arachidonic acid (AA), which reduces the generation of AA metabolites in ischemic gerbil brain. As an extended study, we further investigated the influence of the chronic administration of Et-DHA on free AA levels after ischemia. In addition, Na,K-ATPase activity, cation content, cerebral edema and brain damage were also evaluated. Weanling male gerbils were orally pretreated with either Et-DHA (200 mg/kg) or vehicle, once a day for 10 weeks, and subjected to transient forebrain ischemia by bilateral common carotid occlusion for 30 min. Time-course analyses revealed that pretreatment with Et-DHA, compared with pretreatment with the vehicle, significantly decreased the brain's free AA levels during ischemia (5, 15 and 30 min) and after reperfusion (5, 10, 15 and 30 min), and attenuated the decline of Na,K-ATPase activity at examined time points. Pretreatment with Et-DHA significantly prevented an increase in Na(+) concentration and a decrease in K(+) concentration after 24 h of reperfusion, which resulted in lower cerebral water content. Reduced brain infarct volume and low animal mortality were also observed in Et-DHA-treated animals. These data suggest that the reduction of ischemia-induced AA liberation and accumulation by Et-DHA pretreatment may be attributable to (a) protection against the decline of Na,K-ATPase activity, (b) postischemic cerebral edema and brain damage and (c) animal mortality.  相似文献   

18.
The relationship between electrophysiological changes and Na, K-ATPase activity of neuronal membranes in sodium penicillin-induced epileptic foci was studied. Na,K-ATPase activity is inhibited both in the primary focus and in homotopic contralateral area during latent period and in the stage of forming epileptic activity. In the stage of marked convulsive activity Na, K-ATPase is inhibited only in the primary focus. It is shown that penicillin at a concentration range of 2 x 10(-6)--2 x 10(-3) M does not influence Na,K-ATPase activity of crude synaptosomes of the rat brain cortex. It is suggested that Na,K-ATPase inactivation may serve as a pathogenetic factor in the development of convulsive process.  相似文献   

19.
J E Mahaney  C M Grisham 《Biochemistry》1992,31(7):2025-2034
The interaction of a nitroxide spin-labeled derivative of ouabain with sheep kidney Na,K-ATPase and the motional behavior of the ouabain spin label-Na,K-ATPase complex have been studied by means of electron paramagnetic resonance (EPR) and saturation-transfer EPR (ST-EPR). Spin-labeled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 +/- 0.1 mol of bound ouabain spin label per mole of ATP-dependent phosphorylation sites, even after repeated centrifugation and resuspension of the purified ATPase-containing membrane fragments. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (greater than 99%) of a broad resonance at 0 degrees C, characteristic of a tightly bound spin label which is strongly immobilized by the protein backbone. Saturation-transfer EPR measurements of the spin-labeled ATPase preparations yield effective correlation times for the bound labels significantly longer than 100 microseconds at 0 degrees C. Since the conventional EPR measurements of the ouabain spin-labeled Na,K-ATPase indicated the label was strongly immobilized, these rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements of ouabain spin-labeled Na,K-ATPase (a) cross-linked with glutaraldehyde and (b) crystallized in two-dimensional arrays indicated that the observed rotational correlation times predominantly represented the motion of large Na,K-ATPase-containing membrane fragments, as opposed to the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The results suggest that the binding of spin-labeled ouabain to the ATPase induces the protein to form large aggregates, implying that cardiac glycoside induced enzyme aggregation may play a role in the mechanism of action of the cardiac glycosides in inhibiting the Na,K-ATPase.  相似文献   

20.
We used the baculovirus/Sf9 expression system to gain new information on the mechanistic properties of the rat non-gastric H,K-ATPase, an enzyme that is implicated in potassium homeostasis. The alpha2-subunit of this enzyme (HKalpha2) required a beta-subunit for ATPase activity thereby showing a clear preference for NaKbeta1 over NaKbeta3 and gastric HKbeta. NH4(+), K+, and Na+ maximally increased the activity of HKalpha2-NaKbeta1 to 24.0, 14.2, and 5.0 micromol P(i) x mg(-1) protein x h(-1), respectively. The enzyme was inhibited by relatively high concentrations of ouabain and SCH 28080, whereas it was potently inhibited by oligomycin. From the phosphorylation level in the presence of oligomycin and the maximal NH4(+)-stimulated ATPase activity, a turnover number of 20,000 min(-1) was determined. All three cations decreased the steady-state phosphorylation level and enhanced the dephosphorylation rate, disfavoring the hypothesis that Na+ can replace H+ as the activating cation. The potency with which vanadate inhibited the cation-activated enzyme decreased in the order K+ > NH4(+) > Na+, indicating that K+ is a stronger E2 promoter than NH4(+), whereas in the presence of Na+ the enzyme is in the E1 form. For K+ and NH4(+), the E2 to E1 conformational equilibrium correlated with their efficacy in the ATPase reaction, indicating that here the transition from E2 to E1 is rate-limiting. Conversely, the low maximal ATPase activity with Na+ is explained by a poor stimulatory effect on the dephosphorylation rate. These data show that NH4(+) can replace K+ with similar affinity but higher efficacy as an extracellular activating cation in rat nongastric H,K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号