共查询到20条相似文献,搜索用时 15 毫秒
1.
NH
4
+
excretion was undetectable in N2-fixing cultures ofRhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH
4
+
to the medium. The glutamate analog,l-methionine-dl-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH
4
+
. When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH
4
+
. Nitrogenase activities and NH
4
+
production from fixed N2 were increased considerably when a combined nitrogen source, NH
4
+
(>40 moles NH
4
+
/mg cell protein in 6 days) orl-glutamate (>60 moles NH
4
+
/mg cell protein in 6 days) was added to the cultures together with MSX.Biochemical analysis revealed thatR. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH
4
+
as well as by glutamate.The results demonstrate that utilization of solar energy to photoproduce large quantities of NH
4
+
from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation. 相似文献
2.
Increased Nitrogenase-Dependent H2 Photoproduction by hup Mutants of Rhodospirillum rubrum 总被引:1,自引:0,他引:1 下载免费PDF全文
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H2 photoproduction. However, a mutation in a structural hup gene did not result in maximum H2 production rates, indicating that the capacity to recycle H2 was not completely lost. Highest H2 production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H2 recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA. 相似文献
3.
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H(2) photoproduction. However, a mutation in a structural hup gene did not result in maximum H(2) production rates, indicating that the capacity to recycle H(2) was not completely lost. Highest H(2) production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H(2) recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA. 相似文献
4.
The antigenic determinants for three monoclonal antibodies against cytochrome c2 from Rhodospirillum rubrum were partially characterized by differential chemical modification of free and antibody-bound cytochrome c2 and by cross-reactivity analysis with different antigens. Circular dichroism spectroscopy was used to probe the effect of antibody binding on the conformation of cytochrome c2. The binding of two antibodies was strongly dependent on the native folding of the antigen. The first antibody bound to a determinant around the exposed heme edge on the 'front side' of the molecule which is not antigenic in mitochondrial cytochrome c2. Binding of this antibody to cytochrome c increased the induced CD of the ferric heme in a manner similar to that observed previously when mitochondrial cytochrome-c oxidase bound to the front side of cytochrome c. This observation points to a subtle conformational adaptation of the antigen induced by the antibody. The determinant for the second antibody, which also affected the heme CD spectrum of the antigen, was on a polypeptide loop where cytochrome c2 differs from mitochondrial cytochrome c by an eight-residue insertion. The third antibody, which did not induce a change in CD, bound to a sequential determinant near the amino end of cytochrome c2. Only this antibody cross-reacted with isolated cytochrome-c-derived peptides and with apo-cytochrome c2. A preliminary analysis of the polyclonal immune response of five rats against cytochrome c2 indicates that, unlike in eukaryotic cytochrome c, antigenic determinants are distributed over the whole polypeptide chain of the prokaryotic immunogen. 相似文献
5.
Conformation changes in cytochrome c2 from Rhodospirillum rubrum 总被引:1,自引:0,他引:1
6.
M. Boll 《Archives of microbiology》1969,66(4):374-388
Summary Glutathione reductase (NADPH1: glutathione oxidoreductase (EC 1.6.4.2) was purified 70 fold from Rhodospirillum rubrum by ammonium sulfate fractionation, gelfiltration with Sephadex and chromatography on DEAE-cellulose. The optimum pH of the reaction is 7.5–8.2 K
m
values of 8.4×10–6 M for NADPH and 5.8×10–5 M for GSSG were determined. The kinetic data indicate a bisubstrate reaction mechanism. The prosthetic group is FAD (K
m
1.1×10–6M). The flavin can be completely dissociated from the enzyme, and 70% of the original activity can subsequently be restored by FAD. The molecular weight was determined with a calibrated column Sephadex G-200 and found to be approximately 63,000. The enzyme is inhibited reversibly by several anions. With iodide the inhibition is competitive with respect to GSSG. Sulfhydryl reagents (N-ethylmaleinimide, p-chlormercuribenzoate) strongly inhibit the enzyme when it is present in the reduced state. The enzyme is reduced by low concentrations of NADPH and by higher concentrations of NADH. GSSG protects the enzyme against this inhibition. The enzyme is reversibly inhibited by incubation with NADPH or NADH.
Zusammenfassung Glutathionreduktase wurde aus Rhodospirillum rubrum mit Ammoniumsulfatfraktionierung, Gelfiltration mit Sephadex und Chromatographie an DEAE-Cellulose 70 fach angereichert. Das pH Optimum der Reaktion liegt bei 7,5–8,2. K m -Werte: 8,4·10–6 M für NADPH und 5,8·10–5 M für GSSG. Aus den kinetischen Daten ergibt sich für das Enzym ein Bisubstratreaktionsmechanismus. Die prosthetische Gruppe ist FAD (K m 1,1·10–6 M). Das Flavin kann vollständig vom Enzymprotein abdissoziiert werden, durch erneute Zugabe von FAD können etwa 70% der ursprünglichen Aktivität zurückerhalten werden. Das Molekulargewicht, bestimmt durch Gelfiltration mit einer kalibrierten Säule Sephadex G-200, ist ca. 63000. Das Enzym wird durch verschiedene Anionen reversibel gehemmt. Bei J– ist die Hemmung kompetitiv mit GSSG. Sulfhydrylreagentien (N-Äthylmaleinimid und p-Chlomercuribenzoat) sind potente Inhibitoren, wenn das Enzym im reduzierten Zustand vorliegt. Das Enzym kann bereits durch niedrige Konzentrationen an NADPH sowie durch höhere Konzentrationen an NADH reduziert werden. GSSG schützt das Enzymprotein gegen die Hemmung durch Sulfhydryl-reagentien. Das Enzym wird durch Inkubation mit NADPH und NADH reversibel gehemmt.相似文献
7.
Carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum catalyzes both the oxidation of CO and the reduction of CO(2). Studies of the redox dependence of CO(2) reduction by R. rubrum CODH show that (1) CODH is unable to catalyze CO(2) reduction at potentials greater than -300 mV; (2) the maximum activity is observed at potentials less than -480 mV; and (3) the midpoint potential (E(m)) of the transition from minimum to maximum CO(2) reduction activity occurs at approximately -339 mV. These results indicate that the C(red1) state of R. rubrum CODH (E(m) = -110 mV; g(zyx)() = 2.03, 1.88, 1.71) is not competent to reduce CO(2). Nernst analyses suggest that the reduction of CODH from the C(red1) state to the CO(2)-reducing form (C(unc), g(zyx)() = 2.04, 1.93, 1.89; E < approximately -300 mV) of the enzyme is a one-electron process. For the entire redox range, viologens stimulate CO(2) reduction by CODH more than 50-fold, and it is proposed that viologens accelerate the redox equilibration of redox buffers and [Fe(4)S(4)](B) during catalysis. 相似文献
8.
N M Weare 《Biochimica et biophysica acta》1978,502(3):486-494
A mutant of Rhodospirillum rubrum has been isolated, after mutagenesis with nitrosoguanidine, which is characterized by its inability to grow in the light on malate-minimal media with exogenous ammonia or alanine, poor growth on glutamine and vigorous growth on glutamate. This mutant produces low levels of a key NH+4 assimilation enzyme, glutamate synthase (NADPH-dependent). It also exhibits significant derepression of nitrogenase biosynthesis in the presence of ammonia or alanine, being 15% derepressed for the former and about 70% derepressed for the latter. Some of this mutant's fixed N2 is excreted into the medium as NH+4 (1 mumol NH+4 per mg cell protein in 50 h). Nitrogenase-mediated H2 production by this strain is considerable (42 mumol H2 per mg cell protein in 50 h), approximately twice that of the wild type assayed under similar conditions. These results demonstrate that genetic alteration of the photosynthetic N2-fixer's NH+4 assimilation system disrupts the tight coupling of N2 fixation and NH+4 assimilation normally observed in these organisms, enabling photochemical conversion steps to be utilized for the photoproduction of NH+4 and H2. 相似文献
9.
Alain Planchard Laurent Mignot Thierry Jouenne Guy-Alain Junter 《Applied microbiology and biotechnology》1989,31(1):49-54
Summary Viable cells of Rhodospirillum rubrum were immobilized by entrapment in a planar agar matrix bounded by a microporous membrane filter and were tested for H2 photoproduction in synthetic waste water provided with malate and glutamate. Optimum H2 production was obtained at 15 klx for a C/N ratio of 7–8. Production rates as high as 565 mm3 H2 · h-1 per cubic centimetre of agar were recorded. The composite structures, however, suffered from high diffusion limitations which increased with the population of immobilized bacteria. The H2-evolving activity could be maintained over several months by periodically incubating the biocatalytic structures in a rich nutrient broth. No contamination of the nutrient broth due to leakage of photosynthetic organisms from the gel appeared during incubation of the structures. 相似文献
10.
The carbon monoxide dehydrogenase from the photosynthetic bacterium Rhodospirillum rubrum was purified over 600-fold by DEAE-cellulose chromatography, heat treatment, hydroxylapatite chromatography, and preparative scale gel electrophoresis. In vitro, this enzyme catalyzed a two-electron oxidation of CO to form CO2 as the product. The reaction was dependent on the addition of an electron acceptor. The enzyme was oxygen labile, heat stable, and resistant to tryptic and chymotryptic digestion. Optimum in vitro activity occurred at pH 10.0. A sensitive, hemoglobin-based assay for measuring dissolved CO levels is presented. The in vitro Km for CO was determined to be 110 microM. CO, through an unknown mechanism, stimulated hydrogen evolution in whole cells, suggesting the presence of a reversible hydrogenase in R. rubrum which is CO insensitive in vivo. 相似文献
11.
12.
13.
14.
D-alpha-Hydroxyglutarate dehydrogenase of R. rubrum grown anaerobically in the light was partially purified and some properties were investigated. 1. The enzyme catalyze stoichiometrically the dehydrogenation reaction of D-alpha-hydroxyglutarate into alpha-oxoglutarate, coupled with the reduction of 2, 6-dichlorophenolindophenol. 2. Cytochrome c2, cytochrome c, and ferricyanide are effective as electron acceptors with the crude enzyme but not with the purified one, whereas NAD+ and NADP+ are completely ineffective. The enzyme is thought to play a role in the electron transport system of the organism. 3. D-alpha-Hydroxyglutarate is virtually the sole substrate for the enzyme. The apparent activity against L-alpha-hydroxyglutarate is presumed to be due to contamination of the L-isomer sample with the D-isomer. The enzyme shows barely detectable activity against both isomers of malate and virtually no activity against DL-lactate and glycolate. 4. Both isomers of malate and oxalate, which are presumably substrate analogues, inhibit the enzyme activity. 5. The enzyme is not an inducible enzyme but rather is a constitutive one for R. rubrum, unlike from the enzyme of Pseudomonas putida which is an inducible enzyme for the catabolism of lysine. 相似文献
15.
16.
15N and 1H NMR studies of Rhodospirillum rubrum cytochrome c2 总被引:1,自引:0,他引:1
15N-Enriched cytochrome c2 was purified from Rhodospirillum rubrum that had been grown on 15NH4Cl, and the diamagnetic iron(II) form of the cytochrome was studied by 15N and 1H NMR spectroscopy. 15N resonances of the four pyrrole nitrogens, the ligand histidine nitrogens, the highly conserved tryptophan indole nitrogen, and some proline nitrogens are assigned. The resonances of the single nonligand histidine are observed only at low pH because of severe broadening produced by proton tautomerization. The resonances of exchangeable protons bonded to the nitrogens of the ligand histidine, the tryptophan, and some amide groups are also assigned. The exchange rates of the nitrogen-bound protons vary greatly: most have half-lives of less than minutes, the indolic NH of Trp-62 exchanges with a half-time of weeks, and the ligand histidine NH proton exchanges with a half-time of months. The latter observation is indicative of extreme exclusion of solvent from the area surrounding the ligand histidine and lends credence to theories implicating the degree of hydrophobicity in this region as an important factor in adjusting the midpoint potential. The dependence of the 15N and 1H NMR spectra of ferrocytochrome c2 on pH indicates neither the Trp-62 nor the ligand His side chains become deprotonated to any appreciable extent below pH 9.5. The His-18 NH remains hydrogen bonded, presumably to the Pro-19 carboxyl group, throughout the pH titrations. Because neither deprotonated nor non-hydrogen-bonded forms of His-18 are observed in spectra of the ferrocytochrome, the participation of such forms in producing a heterogeneous population having different g tensor values seems unlikely.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Total cellular RNA extracted from Rhodospirillum rubrum cultured in butyrate-containing medium under strict photosynthetic conditions to the stationary phase of growth has been fractionated on an oligodeoxythymidylic acid-cellulose column into polyadenylated [poly(A)+] RNA and poly(A)- RNA fractions. The poly(A)+ fraction was 9 to 10% of the total bulk RNA isolated. Analysis of the poly(A)+ RNA on a denaturing urea-polyacrylamide gel revealed four sharp bands of RNA distributed in heterodisperse fashion between 16S and 9S. Similar fractionation of the poly(A)- RNA resulted in the separation of 23, 16, and 5S rRNAs and 4S tRNA. Poly(A)+ fragments isolated after combined digestion with pancreatic A and T1 RNases and analysis by denaturing gel electrophoresis demonstrated two major components of 80 and 100 residues. Alkaline hydrolysis of the nuclease-resistant, purified residues showed AMP-rich nucleotides. Through the use of snake venom phosphodiesterase, poly(A) tracts were placed at the 3' end of poly(A)+ RNA. Stimulation of [3H]leucine incorporation into hot trichloroacetic acid-precipitable polypeptides in a cell-free system from wheat germ primed by the poly(A)+ RNA mixture was found to be 220-fold higher than that for poly(A)- RNAs (on a unit mass basis), a finding which demonstrated that poly(A)+ RNAs in R. rubrum are mRNAs. Gel electrophoretic analysis of the translation mixture revealed numerous 3H-labeled products including a major band (Mr, 52,000). The parent protein was precipitated by antibodies to ribulose bisphosphate carboxylase-oxygenase and comprised 6.5% of the total translation products. 相似文献
18.
With Rhodospirillum rubrum, hydrogenase was found to exist partly as an extracellular enzyme in the culture medium. After 4-day cultivation, the total activity and the specific activity of the enzyme in the medium were about 10 times and 230 times as high as those in the crude extract obtained from disrupted cells. The time course for the production of hydrogenase during cultivation was studied. 相似文献
19.
A carotenoprotein has been obtained by SDS-solubilization of chromatophores. It was then purified by (NH4)2SO4 precipitation and Sephadex G-200 filtration. SDS-polyacrylamide gel electrophoresis revealed a single protein with a molecular weight of about 12,000. The absorption spectrum of the complex is entirely different from the usual three peaked carotenoid spectrum, it has only a major peak at 370 nm. However, after acetone extraction the spectrum of spirilloxanthin reappears. The fact that the carotenoid associates with a specific protein provides strong evidence that the complex originates from the chromatophores and is not a preparative artefact. 相似文献
20.
C A Libreros-Minotta J P Pardo G Mendoza-Hernández J L Rendón 《Archives of biochemistry and biophysics》1992,298(1):247-253
Glutathione reductase (NAD(P)H:GSSG oxidoreductase EC 1.6.4.2.) was purified 1160-fold to homogeneity from the nonsulfurous purple bacteria Rhodospirillum rubrum (wild type). Specific activity of the pure preparation was 102 U/mg. The enzyme displayed a typical flavoprotein absorption spectrum with maxima at 274,365, and 459 nm and an absorbance ratio A280/A459 of 7.6. The amino acid analysis revealed an unusually high content of glycine and arginine residues. Titration of the enzyme with 5,5'-dithiobis(2-nitrobenzoic acid) showed a total of two free thiol groups per subunit, one of which is made accessible only under denaturing conditions. An isoelectric point of 5.2 was found for the native enzyme. Km values, determined at pH 7.5, were 6.1 and 90 microM for NADPH and GSSG, respectively. NADH was about 2% as active as NADPH as an electron donor. The enzyme's second choice in disulfide substrate was the mixed disulfide of coenzyme A and glutathione, for which the specific activity and Km values were 5.1 U/mg and 3.4 mM, respectively. A native molecular weight of 118,000 was found, while denaturing electrophoresis gave a value of 54,400 per subunit, thus suggesting that R. rubrum glutathione reductase exists as a dimeric protein. Other physicochemical constants of the enzyme, such as Stokes radius (4.2 nm) and sedimentation coefficient (5.71 S), were also consistent with a particle of 110,000. 相似文献