首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Palmitic acid solubilized with Triton WR-1339 was converted to palmitoyl-CoA by microsomal membranes but lignoceric acid solubilized with Triton WR-1339 was not an effective substrate even though the detergent dispersed the same amount of these fatty acids and was also not inhibitory to the enzyme [I. Singh, R. P. Singh, A. Bhushan, and A. K. Singh (1985) Arch. Biochem. Biophys. 236, 418-426]. This observation suggested that palmitoyl-CoA and lignoceroyl-CoA may be synthesized by two different enzymes. We have solubilized the acyl-CoA ligase activities for palmitic and lignoceric acid of rat brain microsomal membranes with Triton X-100 and resolved them into three separate peaks (fractions) by hydroxylapatite chromatography. Fraction A (palmitoyl-CoA ligase) had high specific activity for palmitic acid and Fraction C (lignoceroyl-CoA ligase) for lignoceric acid. Specific activity of palmitoyl-CoA ligase for palmitic acid was six times higher than in Fraction C and specific activity of lignoceroyl-CoA ligase for lignoceric acid was four times higher than in Fraction A. At higher concentrations of Triton X-100 (0.5%), lignoceroyl-CoA ligase loses activity whereas palmitoyl-CoA ligase does not. Lignoceroyl-CoA ligase lost 60% of activity at 0.6% Triton X-100. Palmitoyl-CoA ligase (T1/2 of 4.5 min) is more stable at 40 degrees C than lignoceroyl-CoA ligase (T1/2 of 1.5 min). The pH optimum of palmitoyl-CoA ligase was 7.7 and that of lignoceroyl-CoA ligase was 8.4. Similar to our results with intact membranes, palmitic acid solubilized with Triton WR-1339 was converted to palmitoyl-CoA by palmitoyl-CoA ligase whereas lignoceric acid when solubilized with Triton WR-1339 was not able to act as substrate for lignoceroyl-CoA ligase. Since solubilized enzyme activities for synthesis of palmitoyl-CoA and lignoceroyl-CoA from microsomal membranes can be resolved into different fractions by column chromatography and demonstrate different properties, we suggest that in microsomal membranes palmitoyl-CoA and lignoceroyl-CoA are synthesized by two different enzymes.  相似文献   

2.
We have previously shown the existence of two separate enzymes for the synthesis of palmitoyl-CoA and lignoceroyl-CoA in rat brain microsomal membranes (1). Palmitoyl-CoA ligase activity was solubilized from brain microsomal membranes with 0.3% Triton X-100 and purified 93-fold by a combination of protein purification techniques. The Km values for the substrates palmitic acid, CoASH and ATP were 11.7 microM, 5.88 microM and 3.77 mM respectively. During activation of palmitic acid ATP is hydrolyzed to AMP and pyrophosphate, as evidenced by the inhibition of this activation by 5 mM concentrations of AMP, pyrophosphate or AMP and pyrophosphate to 70%, 60% and 85% respectively. The divalent metal ion Mg2+ was required for activity; its replacement with Mn2+ resulted in a 35% decrease in activity. Palmitoyl-CoA ligase activity was inhibited by the addition of oleic or stearic acids whereas addition of lignoceric acid or behenic acid had no effect. This supports our previous observation that palmitoyl-CoA and lignoceroyl-CoA are synthesized by two different enzymes in rat brain microsomal membranes.  相似文献   

3.
The different topology of palmitoyl-CoA ligase (on the cytoplasmic surface) and of lignoceroyl-CoA ligase (on the luminal surface) in peroxisomal membranes suggests that these fatty acids may be transported in different form through the peroxisomal membrane (Lazo, O., Contreras, M., and Singh, I. (1990) Biochemistry 29, 3981-3986), and this differential transport may account for deficient oxidation of lignoceric acid in X-adrenoleukodystrophy (X-ALD) (Singh, I., Moser, A. B., Goldfisher, S., and Moser, H. W. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 4203-4207). To define the transport mechanism for these fatty acids through the peroxisomal membrane and its possible implication to lignoceric acid metabolism in X-ALD, we examined cofactors and energy requirements for the transport of palmitic and lignoceric acids in isolated peroxisomes from rat liver and peroxisomes isolated from X-ALD and control fibroblasts. The similar rates of transport of palmitoyl-CoA (87.6 +/- 6.3 nmol/h/mg protein) and palmitic acid in the fatty acid activating conditions (83.4 +/- 5.1 nmol/h/mg protein) and lack of transport of palmitic acid (4% of palmitoyl-CoA transport) when ATP and/or CoASH were removed or substituted by alpha,beta-methyleneadenosine-5'-triphosphate (AMPCPOP) and/or desulfoCoA-agarose from assay medium clearly demonstrate that transport of palmitic acid requires prior synthesis of palmitoyl-CoA by palmitoyl-CoA ligase on the cytoplasmic surface of peroxisomes. The 10-fold higher rate of transport of lignoceric acid (5.3 +/- 0.6 nmol/h/mg protein) as compared with lignoceroyl-CoA (0.41 +/- 0.11 nmol/h/mg protein) and lack of inhibition of transport of lignoceric acid when ATP and/or CoASH were removed or substituted with AMPCPOP or desulfoCoA-agarose suggest that lignoceric acid is transported through the peroxisomal membrane as such. Moreover, the lack of effect of removal of ATP or substitution with AMPOPCP (a nonhydrolyzable substrate) demonstrates that the translocation of palmitoyl-CoA and lignoceric acid across peroxisomal membrane does not require energy. The transport, activation, and oxidation of palmitic acid are normal in peroxisomes from X-ALD. The deficient lignoceroyl-CoA ligase (13% of control) and oxidation of lignoceric acid (10% of control) as compared with normal transport of lignoceric acid into peroxisomes from X-ALD clearly demonstrates that pathogenomonic accumulation of very long chain fatty acids (greater than C22) in X-ALD is due to the deficiency of peroxisomal lignoceroyl-CoA ligase activity.  相似文献   

4.
The subcellular distribution and characteristics of trihydroxycoprostanoyl-CoA synthetase were studied in rat liver and were compared with those of palmitoyl-CoA synthetase and choloyl-CoA synthetase. Trihydroxycoprostanoyl-CoA synthetase and choloyl-CoA synthetase were localized almost completely in the endoplasmic reticulum. A quantitatively insignificant part of trihydroxycoprostanoyl-CoA synthetase was perhaps present in mitochondria. Peroxisomes, which convert trihydroxycoprostanoyl-CoA into choloyl-CoA, were devoid of trihydroxycoprostanoyl-CoA synthetase. As already known, palmitoyl-CoA synthetase was distributed among mitochondria, peroxisomes and endoplasmic reticulum. Substrate- and cofactor- (ATP, CoASH) dependence of the three synthesis activities were also studied. Cholic acid and trihydroxycoprostanic acid did not inhibit palmitoyl-CoA synthetase; palmitate inhibited the other synthetases non-competitively. Likewise, cholic acid inhibited trihydroxycoprostanic acid activation non-competitively and vice versa. The pH curves of the synthetases did not coincide. Triton X-100 affected the activity of each of the synthetases differently. Trihydroxycoprostanoyl-CoA synthetase was less sensitive towards inhibition by pyrophosphate than choloyl-CoA synthetase. The synthetases could not be solubilized from microsomal membranes by treatment with 1 M-NaCl, but could be solubilized with Triton X-100 or Triton X-100 plus NaCl. The detergent-solubilized trihydroxycoprostanoyl-CoA synthetase could be separated from the solubilized choloyl-CoA synthetase and palmitoyl-CoA synthetase by affinity chromatograpy on Sepharose to which trihydroxycoprostanic acid was bound. Choloyl-CoA synthetase and trihydroxycoprostanoyl-CoA synthetase could not be detected in homogenates from kidney or intestinal mucosa. The results indicate that long-chain fatty acids, cholic acid and trihydroxycoprostanic acid are activated by three separate enzymes.  相似文献   

5.
Acyl-CoA ligases from rat brain microsomes: an immunochemical study   总被引:1,自引:0,他引:1  
Acyl-CoA ligase activities, solubilized from rat brain microsomes, were fractionated into three different peaks by hydroxyapatite chromatography. Based on physical and chemical properties, we suggested that peak A (pamitoyl-CoA ligase) and peak C (lignoceroyl-CoA ligase) were two different enzymes (A. Bhushan, R. P. Singh, and I. Singh (1986) Arch. Biochem. Biophys. 246, 374-380). We raised antibodies against purified liver microsomal palmitoyl-CoA ligase (EC 6.2.1.3) and examined the effect of this antibody on acyl-CoA ligase activities for palmitic, arachidonic and lignoceric acids in microsomal enzyme extract and different acyl-CoA ligase peaks from the hydroxyapatite column. In an enzyme activity assay system in microsomal extract, the antisera inhibited the palmitoyl-CoA ligase activity but had very little effect on the acyl-CoA ligase activities for arachidonic and lignoceric acids. This antisera inhibited the acyl-CoA ligase activities for these three fatty acids in peak A and had no effect on these activities in peak B or peak C. Western blot analysis demonstrated that antibody to liver microsomal palmitoyl-CoA ligase cross-reacted with only peak A (palmitoyl-CoA ligase), but not with peak B or peak C. This immunochemical study demonstrates that palmitoyl-CoA ligase does not share immunological determinants with acyl-CoA ligases in peaks B or C, thus demonstrating that palmitoyl-CoA ligase (peak A) is different from the arachidonoyl-CoA and lignoceroyl-CoA ligase activities in peaks B or C.  相似文献   

6.
A novel radiochemical assay for long-chain fatty acid:CoASH ligase activity (AMP) (EC 6.2.1.3) has been developed based on the conversion of [3H]CoASH to long-chain fatty acyl CoA. Fatty acyl [3H]CoA was quantitatively retained on Millipore filters upon filtration of the acidified reaction mixture under conditions where the [3H]CoASH was not retained. The assay was developed using microsomes derived from isolated fat cells as the source of fatty acid:CoASH ligase activity. The assay performed at 25 degrees C for 10 min was linear with added microsomal protein up to 7 mug. The assay was linear with time up to 24 min when 1 mug of protein was employed. Fatty acid:CoASH ligase activity was strongly dependent on ATP and magnesium, was stimulated by Triton WR-1339, and was two- to fivefold dependent on added fatty acid. The filter assay is easier than existing assays based on incorporation of labeled fatty acid and is equally sensitive.  相似文献   

7.
《The Journal of cell biology》1983,97(4):1107-1112
Cerebroside sulfotransferase (CST) catalyzes the final step in the synthesis of sulfatide (sulfogalactocerebroside) by transferring the sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to galactocerebroside. Orientation of CST was studied in vesicles enriched in this enzyme obtained from 21-d-old rat brain. Several lines of evidence indicate that CST is located on the luminal side of these vesicles. (a) Sulfation of endogenous galactocerebroside occurred in vesicles only in the presence of a detergent to render the membranes permeable to exogenous PAPS. (b) There is a pool of latent enzyme within the vesicle, which is released by Triton X-100. (c) CST is not destroyed by trypsin unless the vesicle membranes are first made permeable by Triton X-100. (d) Glycolipid substrate, when covalently attached to agarose beads, was not sulfated unless the enzyme was solubilized. These results are similar to those obtained with thiamine pyrophosphatase, which is known to be located within the lumen of the vesicles. This study establishes that an enzyme synthesizing a complex glycolipid is localized within Golgi-enriched vesicles. Since the product of the CST reaction must also be localized to the luminal side of the vesicles, it is most likely that sulfatide is located at the intraperiod line (outer layer) of myelin. The orientation of CST within the vesicle provides a mechanism for the asymmetrical assembly of glycolipids in bilayers.  相似文献   

8.
The acylation of sn-glycerol 3-phosphate with palmityl-CoA was compared in mitochondria and microsomes isolated from rat liver. Polymyxin B, an antibiotic known to alter bacterial membrane structure, stimulated the mitochondrial glycerophosphate acyltransferase but inhibited the microsomal enzyme. When mitochondrial and microsomal fractions were incubated at 4–6 °C for up to 4 h, the mitochondrial enzyme remained virtually unchanged while the microsomal enzyme lost about one-half of its activity. Incubations at higher temperatures also revealed that the mitochondrial enzyme was comparatively more stable under the conditions employed. The mitochondrial acyltransferase showed no sensitivity to bromelain, papain, Pronase, and trypsin, all of which strongly inhibited the microsomal enzyme. The differential sensitivity to trypsin was observed in mitochondria and microsomes isolated from other rat organs. However, the liver mitochondrial glycerophosphate acyltransferase was inhibited by trypsin in the presence of either 0.05% deoxycholate or 0.1% Triton X-100. The trypsin sensitivity of the mitochondrial glycerophosphate acyltransferase in the presence of detergent was not due to the presence, in the mitochondrial fraction, of a trypsin inhibitor which became inactivated by Triton X-100 or deoxycholate. The results suggest that the catalytic site of mitochondrial glycerophosphate acyltransferase is not exposed to the cytosolic side and it is located in the inner aspect of the outer membrane.  相似文献   

9.
The sn-glycerol-3-phosphate (glycerol-P) acyltransferase of Escherichia coli cytoplasmic membrane was purified in Triton X-100 (Green, P. R., Merrill, A. H., Jr., and Bell, R. M. (1981) J. Biol. Chem. 256, 11151-11159) and incorporated into mixed micelles containing Triton X-100, phosphatidylethanolamine, phosphatidylglycerol, cardiolipin, and beta-octyl glucoside. Enzyme activity was quantitatively reconstituted from the mixed micelle into single-walled phospholipid vesicles by chromatography over Sephadex G-50. Activity coeluted with vesicles of 90-nm average diameter on columns of Sepharose CL-4B and Sephacryl S-1000. These vesicles contained less than 2 Triton X-100 and 5 beta-octyl glucoside molecules/100 phospholipid molecules. Calculations suggested that up to eight 91,260-dalton glycerol-P acyltransferase polypeptides were incorporated per 90-nm vesicle. The pH dependence and apparent Km values for glycerol-P and palmitoyl-CoA of the glycerol-P acyltransferase reconstituted into vesicles were similar to those observed upon reconstitution by mixing of the enzyme in Triton X-100 with a 20-fold molar excess of sonicated phosphatidylethanolamine:phosphatidylglycerol:cardiolipin, 6:1:1. The integrity of vesicles containing glycerol-P acyltransferase was established by trapping 5,5'-dithiobis-(2-nitrobenzoic acid). Chymotrypsin inactivated greater than 95% of the glycerol-P acyltransferase in intact vesicles and cleaved the 91,260-dalton polypeptide into several vesicle-bound and several released peptides, indicating that critical domains of the enzyme are accessible in intact vesicles. Trinitrobenzene sulfonate and 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene caused greater than 90% loss of glycerol-P acyltransferase in vesicles. Disruption of vesicles with Triton X-100 did not reveal significant latent activity. These data strongly suggest that the glycerol-P acyltransferase was reconstituted asymmetrically into the vesicles with its active site facing outward.  相似文献   

10.
Very long chain fatty acids (lignoceric acid) are oxidized in peroxisomes and pathognomonic amounts of these fatty acids accumulate in X-adrenoleukodystrophy (X-ALD) due to a defect in their oxidation. However, in cellular homogenates from X-ALD cells, lignoceric acid is oxidized at a rate of 38% of control cells. Therefore, to identify the source of this residual activity we raised antibody to palmitoyl-CoA ligase and examined its effect on the activation and oxidation of palmitic and lignoceric acids in isolated peroxisomes from control and X-ALD fibroblasts. The normalization of peroxisomal lignoceric acid oxidation in the presence of exogenously added acyl-CoA ligases and along with the complete inhibition of activation and oxidation of palmitic and lignoceric acids in peroxisomes from X-ALD by antibody to palmitoyl-CoA ligase provides direct evidence that lignoceroyl-CoA ligase is deficient in X-ALD and demonstrates that the residual activity for the oxidation of lignoceric acid was derived from the activation of lignoceric acid by peroxisomal palmitoyl-CoA ligase. This antibody inhibited the activation and oxidation of palmitic acid but had little effect on these activities for lignoceric acid in peroxisomes from control cells. Furthermore, these data provide evidence that peroxisomal palmitoyl-CoA and lignoceroyl-CoA ligases are two different enzymes.  相似文献   

11.
Rat liver microsomes solubilized by incubating with lysolecithin or Triton X-100 showed very active UDP-N-acetylglucosamine pyrophosphatase activity leading to the hydrolysis of the substrate into N-acetylglucosamine-P and N-acetylglucosamine. ATP, GTP, CDPcholine, and CDPglucose exerted a considerable inhibitory effect on the solubilized membrane pyrophosphatase activity. CDPcholine and CDPglucose, in addition, appeared to stimulate the transfer of N-acetylglucosamine into endogenous and exogenous acceptor proteins. Evidence is also presented of an inhibitory effect of ATP (and to some extent GTP) on N-acetylglucosaminyltransferase activity. This inhibitory effect of ATP and GTP became clearly evident when the pyrophosphatase activity in the membranes was virtually eliminated in the presence of CDP-choline and CDPglucose. The effect of ATP and GTP on the solubilized membrane enzymes indicated that the inhibition of pyrophosphatase activity alone did not determine the rate of transfer of sugar to protein. The results also suggested that the UDP-N-acetylglucosamine pyrophosphatase and N-acetylglucosaminyltransferase activities were controlled independently and the effect of each nucleotide on these enzymes should, therefore, be carefully evaluated to understood its role in glycopolymer biosynthesis. Also, a possible role of choline and its derivatives in glycoprotein synthesis is discussed.  相似文献   

12.
Sphingosine-1-phosphate lyase is responsible for the ultimate step in sphingolipid breakdown, converting phosphorylated long chain bases into ethanolamine phosphate and a fatty aldehyde. Using tritiated dihydrosphingosine-1-phosphate, prepared enzymatically from [4,5-3H]dihydrosphingosylphosphocholine, we have reinvestigated the subcellular distribution of this enzyme in rat liver. Upon cell fractionation by differential centrifugation, the enzyme showed a microsomal distribution. Further separation of the microsomal fraction by sucrose gradient centrifugation confirmed an association with the endoplasmic reticulum. By means of constrained nonlinear regression, no evidence for a significant association with mitochondrial membranes, as reported previously (Stoffel, W., LeKim, D., and Sticht, G. (1969) Hoppe Seyler's Z. Physiol. Chem. 350, 1233-1241), nor with other cell compartments was found. The lyase activity, which appeared to be sensitive to different detergents, but not to Triton X-100, was not latent. It could be solubilized with Triton X-100, but not by high ionic strength, indicating that it is an integral membrane protein whose catalytic site is most probably exposed to the cytosol. Treatment of intact microsomal vesicles with trypsin or thermolysin inactivated the lyase activity, confirming that its catalytic site(s) or other domains essential for activity face the cytosol.  相似文献   

13.
The properties of Ca(2+)-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C(12)E(8)) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca(2+)-ATPase with a greater specific activity than solubilization with C(12)E(8) or Triton X-100. DHPC was determined to be superior to C(12)E(8); while that the C(12)E(8) was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca(2+)-ATPase retained the E1Ca-E1*Ca conformational transition as that observed for native microsomes; whereas the C(12)E(8) and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca(2+) transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C(12)E(8) and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca(2+)-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C(12)E(8) and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca(2+) uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca(2+)-ATPase retained more organized and native secondary conformation compared to C(12)E(8) and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C(12)E(8) and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca(2+)-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C(12)E(8) and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein-lipid interactions in the function of the membrane-bound enzyme.  相似文献   

14.
N-linked oligosaccharides devoid of glucose residues are transiently glucosylated directly from UDP-Glc in the endoplasmic reticulum. The reaction products have been identified, depending on the organisms, as protein-linked Glc1Man5-9GlcNAc2. Incubation of right side-sealed vesicles from rat liver with UDP-[14C]Glc, Ca2+ ions and denatured thyroglobulin led to the glucosylation of the macromolecule only when the vesicles had been disrupted previously by sonication or by the addition of detergents to the glucosylation mixture. Similarly, maximal glucosylation of denatured thyroglobulin required disruption of microsomal vesicles isolated from the protozoan Crithidia fasciculata. Treatment of the rat liver vesicles with trypsin led to the inactivation of the UDP-Glc:glycoprotein glucosyltransferase only when proteolysis was performed in the presence of detergents. The glycoprotein glucosylating activity could be solubilized upon sonication of right side-sealed vesicles in an isotonic medium, upon passage of them through a French press or by suspending the vesicles in an hypotonic medium. Moreover, the enzyme appeared in the aqueous phase when the vesicles were submitted to a Triton X-114/water partition. Solubilization was not due to proteolysis of a membrane-bound enzyme. The enzyme could also be solubilized from C. fasciculata microsomal vesicles by procedures not involving membrane disassembly. About 30% of endogenous glycoproteins glucosylated upon incubation of intact rat liver microsomal vesicles with UDP-[14C]GLc could be solubilized by sonication or by suspending the vesicles in 0.1 M Na2CO3. These and previous results show that the UDP-Glc:glycoprotein glucosyltransferase is a soluble protein present in the lumen of the endoplasmic reticulum. In addition, both soluble and membrane-bound glycoproteins may be glucosylated by the glycoprotein glucosylating activity.  相似文献   

15.
Bovine brain contains two diacylglycerol lipases. One is localized in purified microsomes and the other is found in the plasma membrane fraction. The microsomal enzyme is markedly stimulated by the non-ionic detergent, Triton X-100, and Ca2+, whereas the plasma membrane diacylglycerol lipase is strongly inhibited by Triton X-100 and Ca2+ has no effect on its enzymic activity. Both enzymes were solubilized using 0.25% Triton X-100. The solubilized enzymes followed Michaelis-Menten kinetics. The apparent Km values for microsomal and plasma membrane enzymes are 30.5 and 12.0 microM respectively. Both lipases are strongly inhibited by RHC 80267, with Ki values for microsomal and plasma membrane diacylglycerol lipases of 70 and 43 microM, respectively. The retention of microsomal diacylglycerol lipase on a concanavalin A-Sepharose column and its elution by methyl alpha-D-mannoside indicates the glycoprotein nature of this enzyme.  相似文献   

16.
Incubation of membranes derived from sarcotubular system of rabbit skeletal muscle with increasing concentrations of Triton X-100 produced both stimulation of the AChE activity and solubilization of this enzyme. Mild proteolytic treatment of microsomal membranes produced a several fold activation of the still membrane-bound acetylcholinesterase (AChE) activity. Attempts were made to solubilize AChE from microsomal membranes by proteolytic treatment. About 30–40% of the total enzyme activity could be solubilized by means of trypsin or papain. Short trypsin treatment of the microsomal membranes produced first an activation of the membrane-bound enzyme followed by solubilization. Incubation of muscle microsomes for a short time with papain yielded a significant portion of soluble enzyme. Membrane-bound enzyme activation was measured after a prolonged incubation period. These results are compared with those of solubilization obtained by treatment of membranes with progressive concentrations of Triton X-100. The occurrence of molecular forms in protease-solubilized AChE was investigated by means of centrifugation analysis and slab gel electrophoresis. Centrifugation on sucrose gradients revealed two main components of 4.4S and 10–11S in either trypsin or papain-solubilized AChE. These components behaved as hydrophilic species whereas the Triton solubilized AChE showed an amphipatic character. Application of slab gel electrophoresis showed the occurrence of forms with molecular weights of 350,000; 175,000; 165,000; 85,000 and 76,000. The stimulation of membrane-bound AChE by detergents or proteases would indicate that most of the enzyme molecules or their active sites are sequestered into the lipid bilayer through lipid-protein or protein-protein interactions and these are broken by proteolytic digestion of the muscle microsomes.  相似文献   

17.
The acyl-CoA ligases convert free fatty acids to acyl-CoA derivatives, and these enzymes have been shown to be present in mitochondria, peroxisomes, and endoplasmic reticulum. Because their activity is obligatory for fatty acid metabolism, it is important to identify their substrate specificities and subcellular distributions to further understand the cellular regulation of these pathways. To define the role of the enzymes and organelles involved in the metabolism of very long chain (VLC) fatty acids, we studied human genetic cell mutants impaired for the metabolism of these molecules. Fibroblast cell lines were derived from patients with X-linked adrenoleukodystrophy (X-ALD) and Zellweger's cerebro-hepato-renal syndrome (CHRS). While peroxisomes are present and morphologically normal in X-ALD, they are either greatly reduced in number or absent in CHRS. Palmitoyl-CoA ligase is known to be present in mitochondria, peroxisomes, and endoplasmic reticulum (microsomes). We found enzyme-dependent formation of lignoceroyl-CoA in these same organelles (specific activities were 0.32 +/- 0.12, 0.86 +/- 0.12, and 0.78 +/- 0.07 nmol/h per mg protein, respectively). However, lignoceroyl-CoA synthesis was inhibited by an antibody to palmitoyl-CoA ligase in isolated mitochondria while it was not inhibited in peroxisomes or endoplasmic reticulum (ER). This suggests that palmitoyl-CoA ligase and lignoceroyl-CoA are different enzymes and that mitochondria lack lignoceroyl-CoA ligase. This conclusion is further supported by data showing that oxidation of lignoceric acid was found almost exclusively in peroxisomes (0.17 nmol/h per mg protein) but was largely absent from mitochondria and the finding that monolayers of CHRS fibroblasts lacking peroxisomes showed a pronounced deficiency in lignoceric acid oxidation in situ (1.8% of control). In spite of the observation that lignoceroyl-CoA ligase activity is present on the cytoplasmic surface of ER, our data indicate that lignoceroyl-CoA synthesized by ER is not available for oxidation in mitochondria. This organelle plays no physiological role in the beta-oxidation of VLC fatty acids. Furthermore, the normal peroxisomal oxidation of lignoceroyl-CoA but deficient oxidation of lignoceric acid in X-ALD cells indicates that cellular VLC fatty acid oxidation is dependent on peroxisomal lignoceroyl-CoA ligase. These studies allow us to propose a model for the subcellular localization of various acyl-CoA ligases and to describe how these enzymes control cellular fatty acid metabolism.  相似文献   

18.
Complete separation of glycerophosphate acyltransferase and 1-acylglycerophosphate acyltransferase from Escherichia coli was obtained by sequential extraction with Triton X-100. Solubilized glycerophosphate acyltransferase was reconstituted by the cholate dispersion and gel filtration method in small unilamellar vesicles. 1-Acylglycerophosphate acyltransferase could not be solubilized from the membranes and was used in endogenous membrane fragments after detergent removal. Mixing of the two preparations and subsequent incubation in the presence of glycerol 3-phosphate, palmitoyl-CoA and oleoyl-CoA resulted in the efficient synthesis of phosphatidic acid. Inclusion of exogenous lysophosphatitic acid in the assay medium resulted in a dilution of the newly synthesized lysophosphatidate. By contrast, the synthesis of phosphatidic acid from glycerol 3-phosphate by the acyltransferases present in native membrane vesicles was barely influenced by the presence of exogenous lysophosphatidic acid. When comparing the utilization of membrane-associated 14C-labeled and newly generated 3H-labeled lysophosphatidic acid, the latter appeared to be the preferred substrate. These results indicate that lysophosphatidic acid, synthesized by glycerophosphate acyltransferase, is utilized by 1-acylglycerophosphate acyltransferase without prior mixing with the total membrane-associated pool of lysophosphatidic acid, and suggest a close proximity of the two enzymes in native E. coli membranes. This property of the acyltransferases is lost upon separation and reconstitution of enzyme activities.  相似文献   

19.
Rat liver microsomes contain a Triton X-100 solubilizable vitamin K-dependent carboxylase activity that converts specific glutamyl residues of a microsomal prothrombin precursor to gamma-carboxyglutamyl residues. This activity has been studied in partially (0.25% Triton X-100) and completely (1.0% Triton X-100) solubilized rat liver microsomal preparations. The rate of vitamin K-dependent carboxylation of endogenous microsomal protein precursors was very rapid in the completely solubilized liver microsomal preparation, and carboxylation of an exogenous peptide substrate (Phe-Leu-Glu-Glu-Leu) proceeded at the same time. In the partially solubilized liver microsomal preparation, the rate of protein carboxylation was greatly reduced, and a lag in carboxylation of the exogenous substrate was observed. When microsomal preparations which were depleted of endogenous precursors were used, this lag was eliminated. These data suggest that both substrates utilize the same microsomal pool of carboxylase and that the fraction of the carboxylase bound to the endogenous precursors is not immediately available to exogenous substrates.  相似文献   

20.
Some properties of two distinct rat brain sialyltransferases, acting on fetuin and asialofetuin, respectively, were investigated. These two membrane-bound enzymes were both strongly inhibited by charged phospholipids. Neutral phospholipids were without effect except lysophosphatidylcholine (lysoPC) which modulated these two enzymes in a different way. At 5 mM lysoPC, the fetuin sialyltransferase was solubilized and highly activated while the asialofetuin sialyltransferase was inhibited. Preincubation of brain microsomes with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), known as a specific anion inhibitor and a non-penetrating probe, led to a moderate inhibition of the asialofetuin sialyltransferase just as in the case of the ovomucoid galactosyltransferase (used here as a marker for the luminal side of the Golgi membrane); under similar conditions, the fetuin sialyltransferase was strongly inhibited. In the presence of Triton X-100, which induced a disruption of membranes, all three enzymes were strongly inhibited by DIDS. Trypsin action on intact membranes showed that asialofetuin sialyltransferase, galactosyltransferase and fetuin sialyltransferase were all slightly inhibited. After membrane disruption by Triton X-100, the first two enzymes were completely inactivated by trypsin while the fetuin sialyltransferase was quite insensitive to trypsin treatment. From these data, we suggest that the fetuin sialyltransferase, accessible to DIDS, is an external enzyme, oriented closely towards the cytoplasmic side of the brain microsomal vesicles (endoplasmic and Golgi membranes), whereas the asialofetuin sialyltransferase is an internal enzyme, oriented in a similar manner to the galactosyltransferase. Moreover, the anion site (nucleotide sugar binding site) of the fetuin sialyltransferase must be different from its active site, as this enzyme, when solubilized, is strongly inhibited by DIDS while no degradation is observed in the presence of trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号