首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

6.
7.
8.
9.
Captan (N-trichloromethylthiocyclohex-4-ene-1,2-dicarboximide) was shown to inhibit RNA synthesis in vitro catalysed by Escherichia coli RNA polymerase. Incorporation of [gamma-32P]ATP and [gamma-32P]GTP was inhibited by captan to the same extent as overall RNA synthesis. The ratio of [3H]UTP incorporation to that of [gamma-32P]ATP or of [gamma-32P]GTP in control and captan-treated samples indicated that initiation was inhibited, but the length of RNA chains being synthesized was not altered by captan treatment. Limited-substrate assays in which re-initiation of RNA chains did not occur also showed that captan had no effect on the elongation reaction. Studies which measured the interaction of RNA polymerase with template DNA revealed that the binding of enzyme to DNA was inhibited by captan. Glycerol-gradient sedimentation of the captan-treated RNA polymerase indicated that the inhibition of the enzyme was irreversible and did not result in dissociation of its subunits. These data are consistent with a mechanism in which RNA polymerase activity was irreversibly altered by captan, resulting in an inability of the enzyme to bind to the template. This interaction was probably at the DNA-binding site on the polymerase and did not involve reaction of captan with the DNA template.  相似文献   

10.
11.
12.
13.
Cordycepin triphosphate inhibited in vitro [3H]GMP incorporation by pricornavirus-specific polymerase complexes isolated from infected HeLa cells. The inhibition of [3H]GMP incorporation could be reversed with ATP added to the reaction mixture along with the inhibitor, but not with GTP so added or with ATP added 10 min after the inhibitor. Products synthesized in vitro in the presence of cordycepin triphosphate lacked full-length single-stranded viral RNA. These results support RNA chain termination by specific competition with ATP as the mechanism of inhibition of picornavirus-specific RNA synthesis by cordycepin triphosphate.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号