共查询到20条相似文献,搜索用时 0 毫秒
1.
The intracellular pH value of Saccharomyces cerevisiae NCYC 1681 was measured using radiolabelled [14 C]-propionic acid. Errors, due to the binding of radioactive material to trub, were eliminated using silicone oil centrifugation. Replication of analyses reduced the variations associated with low cell counts during fermentation. Whilst fermenting brewer's wort, yeast intracellular pH values were maintained within a narrow range (5.9–6.4). Cellular ATP concentrations were highly conserved in spite of the fact that the cells were exposed to an increasing concentration of ethanol as the fermentation progressed. 相似文献
2.
3.
Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response 总被引:3,自引:0,他引:3
Marks VD Ho Sui SJ Erasmus D van der Merwe GK Brumm J Wasserman WW Bryan J van Vuuren HJ 《FEMS yeast research》2008,8(1):35-52
In this study, genome-wide expression analyses were used to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty per cent of the yeast genome significantly changed expression levels to mediate long-term adaptation to fermenting grape must. Among the genes that changed expression levels, a group of 223 genes was identified, which was designated as fermentation stress response (FSR) genes that were dramatically induced at various points during fermentation. FSR genes sustain high levels of induction up to the final time point and exhibited changes in expression levels ranging from four- to 80-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the FSR genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, seems to be responsible for entry of yeast cells into the stationary phase. 相似文献
4.
5.
6.
Lefevre S Sliwa D Auchère F Brossas C Ruckenstuhl C Boggetto N Lesuisse E Madeo F Camadro JM Santos R 《FEBS letters》2012,586(2):143-148
Friedreich ataxia is the most common recessive neurodegenerative disease and is caused by reduced expression of mitochondrial frataxin. Frataxin depletion causes impairment in iron-sulfur cluster and heme biosynthesis, disruption of iron homeostasis and hypersensitivity to oxidants. Currently no pharmacological treatment blocks disease progression, although antioxidant therapies proved to benefit patients. We show that sensitivity of yeast frataxin-deficient cells to hydrogen peroxide is partially mediated by the metacaspase. Metacaspase deletion in frataxin-deficient cells results in recovery of antioxidant capacity and heme synthesis. In addition, our results suggest that metacaspase is associated with mitochondrial respiration, intracellular redox control and genomic stability. 相似文献
7.
P. J. Verbelen S. M. G. Saerens S. E. Van Mulders F. Delvaux F. R. Delvaux 《Applied microbiology and biotechnology》2009,82(6):1143-1156
The volumetric productivity of the beer fermentation process can be increased by using a higher pitching rate (i.e., higher
inoculum size). However, the decreased yeast net growth observed in these high cell density fermentations can have a negative
impact on the physiological stability throughout subsequent yeast generations. The use of different oxygen conditions (wort
aeration, wort oxygenation, yeast preoxygenation) was investigated to improve the growth yield during high cell density fermentations
and yeast metabolic and physiological parameters were assessed systematically. Together with a higher extent of growth (dependent
on the applied oxygen conditions), the fermentation power and the formation of unsaturated fatty acids were also affected.
Wort oxygenation had a significant decreasing effect on the formation of esters, which was caused by a decreased expression
of the alcohol acetyl transferase gene ATF1, compared with the other conditions. Lower glycogen and trehalose levels at the end of fermentation were observed in case
of the high cell density fermentations with oxygenated wort and the reference fermentation. The expression levels of BAP2 (encoding the branched chain amino acid permease), ERG1 (encoding squalene epoxidase), and the stress responsive gene HSP12 were predominantly influenced by the high cell concentrations, while OLE1 (encoding the fatty acid desaturase) and the oxidative stress responsive genes SOD1 and CTT1 were mainly affected by the oxygen availability per cell. These results demonstrate that optimisation of high cell density
fermentations could be achieved by improving the oxygen conditions, without drastically affecting the physiological condition
of the yeast and beer quality. 相似文献
8.
A laboratory-scale research program was undertaken to investigate the kinetics of the mesophilic (37°C) anaerobic digestion of brewery industry by-product. The purpose was to develop data for the design and operation of full-scale units which could be used to generate methane fuel gas from these materials. This is important because the brewery industry has been susceptible to shortages of natural gas in recent years. The minimum SRT is 2.3 days, although for design purposes as much as ten days is recommended. The biomass yield is 0.512 g volatile suspended solids (VSS)/g volatile solids (VS) or 0.421 g VSS/g chemical oxygen demand (COD). The maintenance requirement is 0.052 g VS/g VSS per day or 0.061 g COD/g VSS per day. The specific methane yield is 2.51 liter/g VSS, and the methane productivity is 0.32–0.41 liter/g dry substrate added or 0.69–0.91 liter/g destroyed. The maximum loading rate for which substrate inhibition is not observed is 6 g dry substrate added per liter per day. The results of the entire program indicate that processing brewery by-product in this manner is both technically feasible and economically attractive. 相似文献
9.
Nitrogen availability of grape juice limits killer yeast growth and fermentation activity during mixed-culture fermentation with sensitive commercial yeast strains. 下载免费PDF全文
The competition between selected or commercial killer strains of type K2 and sensitive commercial strains of Saccharomyces cerevisiae was studied under various conditions in sterile grape juice fermentations. The focus of this study was the effect of yeast inoculation levels and the role of assimilable nitrogen nutrition on killer activity. A study of the consumption of free amino nitrogen (FAN) by pure and mixed cultures of killer and sensitive cells showed no differences between the profiles of nitrogen assimilation in all cases, and FAN was practically depleted in the first 2 days of fermentation. The effect of the addition of assimilable nitrogen and the size of inoculum was examined in mixed killer and sensitive strain competitions. Stuck and sluggish wine fermentations were observed to depend on nitrogen availability when the ratio of killer to sensitive cells was low (1:10 to 1:100). A relationship between the initial assimilable nitrogen content of must and the proportion of killer cells during fermentation was shown. An indirect relationship was found between inoculum size and the percentage of killer cells: a smaller inoculum resulted in a higher proportion of killer cells in grape juice fermentations. In all cases, wines obtained with pure-culture fermentations were preferred to mixed-culture fermentations by sensory analysis. The reasons why killer cells do not finish fermentation under competitive conditions with sensitive cells are discussed. 相似文献
10.
Joanna Berlowska Dorota Kregiel Wojciech Ambroziak 《World journal of microbiology & biotechnology》2013,29(7):1307-1316
The adhesion of cells to solid supports is described as surface-dependent, being largely determined by the properties of the surface. In this study, ceramic surfaces modified using different organosilanes were tested for proadhesive properties using industrial brewery yeast strains in different physiological states. Eight brewing strains were tested: bottom-fermenting Saccharomyces pastorianus and top-fermenting Saccharomyces cerevisiae. To determine adhesion efficiency light microscopy, scanning electron microscopy and the fluorymetric method were used. Modification of chamotte carriers by 3-(3-anino-2-hydroxy-1-propoxy) propyldimethoxysilane and 3-(N, N-dimethyl-N-2-hydroxyethyl) ammonium propyldimethoxysilane groups increased their biomass load significantly. 相似文献
11.
Berthels NJ Cordero Otero RR Bauer FF Thevelein JM Pretorius IS 《FEMS yeast research》2004,4(7):683-689
While unfermented grape must contains approximately equal amounts of the two hexoses glucose and fructose, wine producers worldwide often have to contend with high residual fructose levels (>2 gl(-1)) that may account for undesirable sweetness in finished dry wine. Here, we investigate the fermentation kinetics of glucose and fructose and the influence of certain environmental parameters on hexose utilisation by wine yeast. Seventeen Saccharomyces cerevisiae strains, including commercial wine yeast strains, were evaluated in laboratory-scale wine fermentations using natural Colombard grape must that contained similar amounts of glucose and fructose (approximately 110 gl(-1) each). All strains showed preference for glucose, but to varying degrees. The discrepancy between glucose and fructose utilisation increased during the course of fermentation in a strain-dependent manner. We ranked the S. cerevisiae strains according to their rate of increase in GF discrepancy and we showed that this rate of increase is not correlated with the fermentation capacity of the strains. We also investigated the effect of ethanol and nitrogen addition on hexose utilisation during wine fermentation in both natural and synthetic grape must. Addition of ethanol had a stronger inhibitory effect on fructose than on glucose utilisation. Supplementation of must with assimilable nitrogen stimulated fructose utilisation more than glucose utilisation. These results show that the discrepancy between glucose and fructose utilisation during fermentation is not a fixed parameter but is dependent on the inherent properties of the yeast strain and on the external conditions. 相似文献
12.
Translationally repressed mRNA transiently cycles through stress granules during stress 总被引:1,自引:1,他引:1 下载免费PDF全文
Mollet S Cougot N Wilczynska A Dautry F Kress M Bertrand E Weil D 《Molecular biology of the cell》2008,19(10):4469-4479
In mammals, repression of translation during stress is associated with the assembly of stress granules in the cytoplasm, which contain a fraction of arrested mRNA and have been proposed to play a role in their storage. Because physical contacts are seen with GW bodies, which contain the mRNA degradation machinery, stress granules could also target arrested mRNA to degradation. Here we show that contacts between stress granules and GW bodies appear during stress-granule assembly and not after a movement of the two preassembled structures. Despite this close proximity, the GW body proteins, which in some conditions relocalize in stress granules, come from cytosol rather than from adjacent GW bodies. It was previously reported that several proteins actively traffic in and out of stress granules. Here we investigated the behavior of mRNAs. Their residence time in stress granules is brief, on the order of a minute, although stress granules persist over a few hours after stress relief. This short transit reflects rapid return to cytosol, rather than transfer to GW bodies for degradation. Accordingly, most arrested mRNAs are located outside stress granules. Overall, these kinetic data do not support a direct role of stress granules neither as storage site nor as intermediate location before degradation. 相似文献
13.
14.
The transcriptional response of yeast to saline stress 总被引:32,自引:0,他引:32
Posas F Chambers JR Heyman JA Hoeffler JP de Nadal E Ariño J 《The Journal of biological chemistry》2000,275(23):17249-17255
15.
Nitrogen demand of different yeast strains during alcoholic fermentation. Importance of the stationary phase 总被引:3,自引:0,他引:3
The nitrogen demand of industrial yeast strains were compared. Substantial differences were found between strains. These did not change regardless of the initial medium composition and added nitrogen source. To separately study growth and stationary phases, we ran fermentations with different nitrogen feeding profiles: a) exponentially fed fermentations with a long growth phase, and b) constant rate fermentations with nitrogen addition during the stationary phase. Differences between stains mostly appeared during the second phase. Measuring nitrogen requirements under such conditions would thus be an interesting complementary test when selecting new strains especially for enological purposes since most fermentation kinetics are nitrogen limited. 相似文献
16.
17.
Xylulose fermentation by Saccharomyces cerevisiae and xylose-fermenting yeast strains 总被引:6,自引:0,他引:6
Xylulose fermentation by four strains of Saccharomyces cerevisiae and two strains of xylose-fermenting yeasts, Pichia stipitis CBS 6054 and Candida shehatae NJ 23, was compared using a mineral medium at a cell concentration of 10 g (dry weight)/l. When xylulose was the sole carbon source and fermentation was anaerobic, S. cerevisiae ATCC 24860 and CBS 8066 showed a substrate consumption rate of 0.035 g g cells–1 h–1 compared with 0.833 g g cells–1 h–1 for glucose. Bakers' yeast and S. cerevisiae isolate 3 consumed xylulose at a much lower rate although they fermented glucose as rapidly as the ATCC and the CBS strains. While P. stipitis CBS 6054 consumed both xylulose and glucose very slowly under anaerobic conditions, C. shehatae NJ 23 fermented xylulose at a rate of 0.345 g g cells–1 h–1, compared with 0.575 g g cells–1 h–1 for glucose. For all six strains, the addition of glucose to the xylulose medium did not enhance the consumption of xylulose, but increased the cell biomass concentrations. When fermentation was performed under oxygen-limited conditions, less xylulose was consumed by S. cerevisiae ATCC 24860 and C. shehatae NJ 23, and 50%–65% of the assimilated carbon could not be accounted for in the products determined. 相似文献
18.
Laluce C Bertolini MC Ernandes JR Martini AV Martini A 《Applied and environmental microbiology》1988,54(10):2447-2451
Yeast strains capable of fermenting starch and dextrin to ethanol were isolated from samples collected from Brazilian factories in which cassava flour is produced. Considerable alcohol production was observed for all the strains selected. One strain (DI-10) fermented starch rapidly and secreted 5 times as much amylolytic enzyme than that observed for Schwanniomyces alluvius UCD 54-83. This strain and three other similar isolates were classified as Saccharomyces cerevisiae var. diastaticus by morphological and physiological characteristics and molecular taxonomy. 相似文献
19.
Tony D'Amore Inge Russell Graham G. Stewart 《Journal of industrial microbiology & biotechnology》1989,4(4):315-323
Summary When glucose and fructose are fermented separately, the uptake profiles indicate that both sugars are utilized at similar rates. However, when fermentations are conducted in media containing an equal concentration of glucose and fructose, glucose is utilized at approximately twice the rate of fructose. The preferential uptake of glucose also occurred when sucrose, which was first rapidly hydrolyzed into glucose and fructose by the action of the enzyme invertase, was employed as a substrate. Similar results were observed in the fermentation of brewer's wort and wort containing 30% sucrose and 30% glucose as adjuncts. In addition, the high levels of glucose in the wort exerted severe catabolite repression on maltose utilization in theSaccharmyces uvarum (carlsbergensis) brewing strain. Kinetic analysis of glucose and fructose uptake inSaccharomyces cerevisiae revealed aK
m of 1.6 mM for glucose and 20 mM for fructose. Thus, the yeast strain has a higher affinity for glucose than fructose. Growth on glucose or fructose had no repressible effect on the uptake of either sugar. In addition, glucose inhibited fructose uptake by 60% and likewise fructose inhibited, glucose uptake by 40%. These results indicate that glucose and fructose share the same membrane transport components. 相似文献
20.
Date DA Jacob CJ Bekier ME Stiff AC Jackson MW Taylor WR 《Cell biology international》2007,31(12):1470-1481
Rb/E2F regulates many genes that encode proteins required for the cell cycle. Using affymetrix microarrays we previously identified genes regulated by the Rb proteins p130 and p107, many of which are involved in the cell cycle. Several genes with unknown functions were also repressed by p130 and p107, of which some have recently been found to have various roles in mitosis, the spindle checkpoint and cytokinesis. This study focuses on the regulation of borealin/dasra/cdca8, which encodes a recently discovered member of the chromosomal passenger complex. It is recorded that borealin is a cell cycle regulator, down-regulated in response to p53/Rb-signaling, and up-regulated in many types of cancerous tissues. 相似文献