首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalepsy or pronounced freezing is a natural passive defense strategy in animals and a syndrome of some mental disorders in human. Hereditary catalepsy was shown to be associated with depressive-like features in rats and mice. The loci underlying the difference in predisposition to catalepsy between catalepsy-prone CBA/lacJ and catalepsy-resistant AKR/J mice were mapped using congenic line and selective breeding approaches. Three congenic mouse lines (AKR.CBA-D13Mit76C, AKR.CBA-D13Mit76A and AKR.CBA-D13Mit78) carrying the 59- to 70-, 61- to 70- and 71- to 75-c m fragments of chromosome 13 transferred from the CBA to the AKR genome were created by nine successive backcrossing of (CBA × AKR)F1 on AKR strain. Because catalepsy was found only in the AKR.CBA-D13Mit76C and AKR.CBA-D13Mit76A mice, the major gene of catalepsy was mapped on the fragment of 61–70 c m . Selective breeding of the (CBA × (CBA × AKR))BC backcross generation for high predisposition to catalepsy showed numerous genome-wide distributed CBA-derived alleles as well as the AKR-derived alleles mapped on chromosome 17 and on the proximal parts of chromosomes 10 and 19 that increased the cataleptogenic effect of the major gene.  相似文献   

2.
Glycoprotein gp130 is involved in the interleukin‐6 (IL‐6) and related cytokines' signaling. Linkage between the gp130 coding gene and freezing reaction (catalepsy) was shown. Here, we compared the expression and function of the gp130 in male mice of catalepsy‐resistant AKR/J strain and catalepsy‐prone congenic AKR.CBA‐D13Mit76 strain created by transferring the gp130 gene allele from catalepsy‐prone CBA/Lac to the genome of AKR/J strain. No difference in the gp130 expression in the frontal cortex, hippocampus and midbrain between AKR and AKR.CBA‐D13Mit76 mice was found. However, AKR.CBA‐D13Mit76 mice were more sensitive to bacterial lipopolysaccharide (LPS). The administration of LPS (50 µg/kg, ip) significantly increased mRNA level of the gene coding IL‐6‐regulated glial fibrillary acidic protein (GFAP) in the midbrain, induced catalepsy and decreased locomotion in the open field and social investigation tests in AKR.CBA‐D13Mit76, but not in AKR mice. The result indicates (1) the association between gp130 and hereditary catalepsy, (2) increased functional activity rather than expression of gp130 in AKR.CBA‐D13Mit76 mice and (3) the involvement of gp130 in the mechanism of LPS‐induced alteration of behavior.  相似文献   

3.
Congenic mouse strain AKR.CBA-D13Mit76 carries the 59-70 cM fragment of chromosome 13 transferred from genome of cataleptic CBA/Lac strain to genome of AKR/J none-cataleptic strain. This fragment contains the major gene of predisposition to pinch-induced catalepsy. We investigated contribution of the fragment to regulation of sensitivity of catalepsy, sexual motivation and social investigation to classical tricyclic antidepressant imipramine. The sexual motivation was higher in AKR.CBA-D13Mit76 than in AKR mice. Chronic imipramine treatment (25 mg/kg) reduced it in AKR.CBA-D13Mit76 mice and had no effect on weakly expressed sexual motivation of AKR males. No significant effects of genotype or chronic imipramine treatment on characteristics of social interest were observed. Imipramine failed to alter catalepsy expression in AKR.CBA-DI3Mit76 mice. Possible molecular genetic mechanisms underlying difference in behavioral responses to antidepressant administration are discussed.  相似文献   

4.
Catalepsy is a pathological animal behavior that is usually associated with dysfunctions in the striatal pallidal system of the brain and can be caused by different reasons. It was previously demonstrated that hereditary catalepsy is linked to the 111.35–116.16 million bp fragment of chromosome 13 in mice. The level of mRNA content in 42 genes localized in this fragment was determined in the study. Two brain departments that are functionally associated with catalepsy (striatum and substantia nigra) were studied in mice from AKR line (resistant to catalepsy), cataleptic CBA line, and recombinant cataleptic AKR.CBA-D13Mit76 (D13) line. The latter was obtained by the transfer of indicated fragment of chromosome 13 from the CBA line to the genome of the AKR line. It was found that two genes (Ndufs4 and Ppap2a) in the striatum and ten genes (Esm1, Fst, Gm10735, Gm15322, Gm15323, Gm15324, Gm15325, Il6st, Il31ra, and Itga1) in the substantia nigra differ in the level of mRNA expression in AKR and D13 lines. The Mcidas gene mRNA level is lower in both structures in D13 line mice than in the AKR line. The expression of the Hspb3 and Mocs2 genes (that encode heat shock protein and molybdenum cofactor synthesis, respectively) is lower in the substantia nigra of CBA and D13 cataleptic line mice than in the AKR line resistant to catalepsy. These genes are considered to be the most likely candidate genes of the catalepsy. The coexpression of a large amount of genes in these brain structures in sick animals indicates the existence of a complex gene network that regulates hereditary catalepsy.  相似文献   

5.
Glycoprotein gp130 is involved in signal transduction from the receptors of such important cytokines as interleukin-6 (IL-6), leukemia inhibitory factor, and ciliary neurotrophic factor, which play a critical role in immunity, inflammation, and neurogenesis. Both IL-6 and the brain neurotransmitter serotonin are involved in the mechanism of depression. The aim of this work was to investigate the role of gp130 in regulating the gene expression of the tryptophan hydroxylase 2 (TPH2), the key enzyme of the serotonin synthesis, as well as of the 5-HT transporter and the 5-HT1A and 5-HT2A receptors. The study was carried out on adult male mice of the congenic strains AKR and AKR.CBA-D13Mit76; the latter was created by transferring a gp130-containing fragment of chromosome 13 from the CBA/Lac strain into the AKR/J genome. The expression of 5-HT1A and 5-HT2A receptor genes in the hippocampus and midbrain and of the TPH2 gene in the midbrain was decreased in AKR.CBA-D13Mit76 mice in comparison to AKR mice. Activation of nonspecific immunity by administration of a bacterial endotoxin lipopolysaccharide did not affect the gene expression in AKR mice but increased the 5-HT2A receptor expression in the midbrain and decreased the 5-HT1A receptor expression in the cortex in AKR.CBA-D13Mit76 mice. These results suggest that gp130 is involved in the regulation of TPH2, 5-HT1A and 5-HT2A receptor genes and is associated with the genetically determined sensitivity to lipopolysaccharides.  相似文献   

6.
Glycoprotein gp130 is involved in signaling out of significant cytokine receptors as interleukin-6 (IL-6), leukemia inhibitory factor and ciliary neurotrophic factor, which play critical role in immunity, inflammation and neurogenesis. IL-6 and brain neurotransmitter serotonin are involved in the mechanism of depression. The aim of this work was to investigat the role of protein gp130 in the regulation of expression of genes, coding the key enzyme of serotonin synthesis--tryptophan hydroxylase 2 (TPH2), 5-HT-transporter, 5-HT(1A)- and 5-HT(2A)-receptors of serotonin. The study was carried out on adult mouse males of AKR and congenic AKR.CBA-D13Mit76 strains, created by transfer of the fragment of chromosome 13 containing the gene coding gp130 protein from CBA/Lac strain to the genome of AKR/J strain. Decreased expression of 5-HT(1A) - 5-HT(2A)-receptor genes in hippocampus midbrain and TPH2 gene in midbrain in AKR.CBA-D13Mit76 mice compared with AKR mice were shown. Activation of nonspecific immunity by bacterial endotoxin lipopolysaccharide (LPS) administration did not affect the genes expression in AKR mice, but increased 5-HT(2A)-receptor expression in midbrain and decreased 5-HT(1A)-receptor expression in cortex in AKR.CBA-D13Mit76 mice. The results indicate: 1) the participation of gp130 in the regulation of TPH2, 5-HT(1A)- and 5-HT(2A)-receptor genes and 2) association of this protein in the genetically determined sensitivity to LPS.  相似文献   

7.
In the present study, the 5‐HT2A and 5‐HT1A receptors functional activity and 5‐HT2A receptor gene expression were examined in the brain of ASC/Icg and congenic AKR.CBAD13Mit76C mouse strains (genetically predisposed to catalepsy) in comparison with the parental catalepsy‐resistant AKR/J and catalepsy‐prone CBA/Lac mouse strains. The significantly reduced 5‐HT2A receptor functional activity along with decreased 5‐HT2A receptor gene expression in the frontal cortex was found in all mice predisposed to catalepsy compared with catalepsy‐resistant AKR/J. 5‐HT2A agonist DOI (0.5 and 1 mg/kg, i.p.) significantly reduced catalepsy in ASC/Icg and CBA/Lac, but not in AKR.CBAD13Mit76C mice. Essential increase in 5‐HT1A receptor functional activity was shown in catalepsy‐prone mouse strains in comparison with catalepsy‐resistant AKR/J mice. However, in AKR.CBAD13Mit76C mice it was lower than in ASC/Icg and CBA/Lac mice. The inter‐relation between 5‐HT2A and 5‐HT1A receptors in the regulation of catalepsy was suggested. This suggestion was confirmed by prevention of DOI anticataleptic effect in ASC/Icg and CBA/Lac mice by pretreatment with 5‐HT1A receptor antagonist p‐MPPI (3 mg/kg, i.p.). At the same time, the activation of 5‐HT2A receptor led to the essential suppression of 5‐HT1A receptor functional activity, indicating the opposite effect of 5‐HT2A receptor on pre‐ and postsynaptic 5‐HT1A receptors. Thus, 5‐HT2A/5‐HT1A receptor interaction in the mechanism of catalepsy suppression in mice was shown.  相似文献   

8.
Immobility reaction or catalepsy is a natural passive defensive (cryptic) behavioral response to the appearance of a predator. Selection for high predisposition to catalepsy has been performed in a population of (CBA × (CBA × AKR)) backcrosses of the crossing between mouse lines prone and resistant to catalepsy (CBA and AKR, respectively). A rapid increase in the number of animals with catalepsy has been observed: from 23% in backcrosses to 71% in the S3 generation. Selection for catalepsy does not affect mouse anxiety in the open field and plus-maze tests. However, S8 and S9 mice are characterized by a decreased motor activity in the open-field test and an increased immobility in the forced swim and tail suspension tests, which is interpreted as an increase in “ depressiveness.” The results indicate that genetically determined catalepsy is related to depressive-like characteristics of defensive behavior.  相似文献   

9.
Mechanisms of maintenance of temperature homeostasis in warm and under effect of cold were studied in mice of AKR strain and of its coherent strain AKR.CBA-D13Mit76 with the changed gene i16st encoding the gp 130 receptor, via which IL-6 performs its action. Under thermoneutral conditions and under action of cold, there were recorded temperature parameters, total oxygen consumption, carbon dioxide release, respiratory coefficient, and electrical muscle activity. Animals of the studied strains demonstrated different reactions to equal cold effect. At cooling, all mice of the AKR strain entered the state of hypothermia by decreasing metabolism. Mice of the AKR.CBA-D13Mit76 line showed 2 different types of reaction: 39 % of the animals of this strain reacted like mice of the AKR strain, but the majority (61 %) resisted actively to the cold action, which was manifested as a marked increase of metabolism. Taking into account the gene penetrance, this can indicate effect of the gene i16st on choice of the active ("regulated") or passive ("dependent") way of the organism reacting to temperature actions.  相似文献   

10.
Mechanisms of maintenance of temperature homeostasis in warm and under effect of cold were studied in mice of AKR line and of its coherent line AKR.CBA-D13Mit76 with the changed gene i16 encoding the gp130 receptor via which IL-6 performs its action. Under thermoneutral conditions and under action of cold, there were recorded temperature parameters, total oxygen consumption, carbon dioxide release, respiratory coefficient, and electrical muscle activity. Animals of the studied lines demonstrated different reactions to equal cold effect. At cooling, all mice of the AKR line entered the state of hypothermia by decreasing metabolism. Mice of the AKR.CBAD13Mit76 line showed 2 different types of reaction: 39% of animals of this line reacted like mice of the AKR line, but the majority (61%) resisted actively to the cold action, which was manifested as a marked increase of metabolism. Taking into account the gene penetrance, this can indicate effect of the gene i16 on choice of the active (“regulated”) or passive (“dependent”) way of the organism reacting to temperature actions.  相似文献   

11.
The activity of the rate-limiting enzyme of serotonin biosynthesis, tryptophan hydroxylase, and specific binding of [3H]ketanserin to 5-HT2A receptors and [3H]8-OH-DPAT to 5-HT1A receptors in the striatum of genetically predisposed to catalepsy rats and mice have been studied. The activity of tryptophan hydroxylase in the striatum of rats bred for many generations for predisposition to catalepsy was higher than in nonselected rats. Mice of highly susceptible to pinch-induced catalepsy CBA strain also differed from noncataleptic AKR and C57BL mouse strains by higher activity of tryptophan hydroxylase in striatum. Inhibition of tryptophan hydroxylase with p-chlorophenylalanine or p-chloromethamphetamine significantly decreased immobility time in genetically predisposed to catalepsy rats and mice. A decrease in the [3H]ketanserin specific binding in the striatum of cataleptic rats and CBA mice was found indicating a decrease in 5-HT2A receptor density. A decrease in [3H]8-OH-DPAT binding in striatum of cataleptic rats but not in CBA mice was shown. These results indicate that serotonergic system of striatum is involved in the expression of hereditary catalepsy and suggest that hereditary catalepsy may result from genetic changes in the regulation of serotonin metabolism and reception in striatum.  相似文献   

12.
Catalepsy (pronounced motor inhibition) is a natural defensive reaction against predator. Recently, the quantitative trait locus for catalepsy was mapped on mouse chromosome 13 near the 5-HT(1A) serotonin receptor gene. Here, the linkage between catalepsy and the 5-HT(1A) receptor gene was verified using breeding experiment. Selective breeding for high predisposition to catalepsy was started from backcross BC[CBA x (CBA x AKR)] generation between catalepsy-prone (CBA) and catalepsy-resistant (AKR) mouse strains. CBA and AKR strains also differed in the 5-HT(1A) receptor functional activity. A rapid increase of cataleptic percentage from 21.2% in the backcrosses to 71% in the third generation of selective breeding (S3) was shown. The fragment of chromosome 13 including the 5-HT(1A) receptor gene was marked with D13Mit76 microsatellite. Breeding for catalepsy increased the concentration of CBA-derived and decreased the concentration of AKR-derived alleles of microsatellite D13Mit76 in the S1 and S2. All mice of the S9 and S12 were homozygous for CBA-derived allele of D13Mit76 marker. Mice of the S12 showed CBA-like receptor activity. These findings indicate that selective breeding for behavior can involve selection of polymorphic variants of the 5-HT(1A) receptor gene.  相似文献   

13.
Immobility reaction or catalepsy is a natural passive defensive (lurking) behavioral response to the appearance of a predator. Selection for high predisposition to catalepsy has been performed in a population of (CBA x (CBA x AKR)) backcrosses of the crossing between mouse lines sensitive and resistant to catalepsy (VBA and AKR, respectively). A rapid increase in the number of animals with catalepsy has been observed: from 23% in backcrosses to 71% in the S3 generation. Selection for catalepsy does not affect mouse anxiety in the open field and plus-maze tests. However, S8 and S9 mice are characterized by a decreased motor activity in the open-field test and an increased immobility in the forced swim and tail suspension tests, which is interpreted as an increase in "depressiveness." The results indicate that genetically determined catalepsy is related to depressive-like characteristics of defensive behavior.  相似文献   

14.
Genetic control of catalepsy in mice   总被引:1,自引:0,他引:1  
Pinch-induced immobility (catalepsy) was studied in mice of 9 inbred strains. CBA mice were found to be different from those of other strains both by the highest percent of cataleptics (56%) and by the highest duration of immobility. The Mendelian analysis of predisposition to catalepsy was performed on CBA and AKR mice strains contrasting in this feature. Reciprocal F1 hybrids did not display any catalepsy. Manifestation of cataleptics in the F2 and in CBA x F2 backcrosses suggested that catalepsy was inherited as a recessive, monogenic, autosomal feature.  相似文献   

15.
The passive avoidance learning and extinction in mice strain ASC with high predisposition to catalepsy as compared with mice of CBA and AKR strains were analyzed. Impairment of fear extinction as a major symptom of depression was revealed in ASC mice, whereas a delay of extinction in CBA mice and fast formation of new inhibitory learning in AKR mice were found. It is suggested that the long persistence of fear in ASC mice results from increased anxiety during the repeated presentation of a context in the absent of aversive stimulus. Defect of fear inhibition in ASC mice makes it possible to use this strain of mice as genetic model of depression.  相似文献   

16.
Pinch-induced catalepsy and thyptophan hydroxylase (TPH) activity in striatum and midbrain were determined in male mice of 6 inbred strains. Pronounced catalepsy was found in the only mice strain--CBA. TPH activity in midbrain and especially in striatum of CBA mice was higher than in the strains, which did not display catalepsy. The experimental situation, which promotes the development of highly aggressive CBA males, caused a decrease in TPH activity in striatum and these mice did not express genetic predisposition to catalepsy. The results indicate that TPH activity in striatum is involved in the mechanism of catalepsy in mice.  相似文献   

17.
The results of experiments on the inheritance and neurobiological mechanism of high predisposition to tonic immobility (catalepsy) in CBA mice are discussed. Genetic analysis has demonstrated a monogenic inheritance of the predisposition to catalepsy. A set of polymorphic microsatellite markers has been used to demonstrate that the predisposition to catalepsy is linked to the distal fragment of mouse chromosome 13, which contains the gene of the 5-HT1A serotonin receptor. Pharmacological and biochemical evidence for the association between hereditary catalepsy and 5-HT1A receptor dysfunction are presented. The use of CBA mice for studying the mechanisms of depression and the effects of antidepressants is discussed.  相似文献   

18.
Cloned and unselected bone marrow-derived macrophage cell lines were obtained from A/J, AKR/J, BIO.A(5R), CBA/J, DBA/2, HPC, NZW, and [NZB X NZW]F1 mice, and their interactions were studied in vitro with a lightly encapsulated natural serotype A isolate of Cryptococcus neoformans. Growth inhibition of C. neoformans was seen with all of the cell lines, as determined by enumeration of colony-forming units. Inhibition was enhanced by a high concentration (8%) of fresh mouse serum and was the same for serum obtained from AKR/J (C5 deficient) and BIO.A (C5 normal) mice. Macrophage incubation with fresh AKR/J serum which had been absorbed with heat-killed Cryptococcus cells also inhibited C. neoformans growth. Heat-inactivation, EDTA addition or anti-C3 antibody treatment of fresh serum abolished the opsonic activity for C. neoformans, while EGTA addition to fresh serum was without effect on opsonization. In addition, neither IgM nor IgG1 murine monoclonal antibodies specific for C. neoformans enhanced phagocytosis or killing of the yeast by macrophages. These findings are consistent with the interpretation that C3b is an important modulator of interactions between macrophages and C. neoformans.  相似文献   

19.
Dependence of the passive avoidance extinction dynamics on a mouse strain was shown. Mice C57BL/6J and AKR/J extinguished more quickly relative to DBA/2J, CBA/Lac and BALB/c, and this extinction was stable. Individual instability of extinction was characteristic of C3H/HeJ mice. Extinction of the passive avoidance in mice CBA/Lac and BALB/c was slower: with a delay in the beginning and prolonged retention of memory trace of the shock exposure. In DBA/2J mice, the extinction was impaired. These data suggest that DBA/2J, CBA/Lac and BALB/c mice constitute groups of risk with high predisposition to impairment of extinction of memory of aversive events, which is thought to be a symptom of a depressive-like state.  相似文献   

20.
Kulikov AV 《Genetika》2004,40(6):779-786
The results of experiments on the inheritance and neurobiological mechanism of high predisposition to tonic immobility (catalepsy) in CBA mice are discussed. Genetic analysis has demonstrated a monogenic inheritance of the predisposition to catalepsy. A set of polymorphic microsatellite markers has been used to demonstrate that the predisposition to catalepsy is linked to the distal fragment of mouse chromosome 13, which contains the gene of the 5-HT1A-serotonin receptor. Pharmacological and biochemical evidence for the association between hereditary catalepsy and 5-HT1A-receptor dysfunction are presented. The use of CBA mice for studying the mechanisms of depression and the effects of antidepressants is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号