首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neurotrophins regulate key functions of nervous tissue cells. Analysis of neurotrophin mRNA expression is an appropriate tool to assess therapeutic efficiency of antistroke drugs. We have analyzed the effect of synthetic peptide semax and its C-terminal Pro-Gly-Pro tripeptide on mRNA expression of neurotrophins Ngf, Bdnf, and Nt-3 and their receptors TrkA, TrkB, TrkC, and p75 in rat frontal cortex, hippocampus, and cerebellum after bilateral common carotid artery occlusion. The animals were decapitated at 30 min and 1, 2, 4, 8, 12, and 24 h after the operation. The mRNA expression of neurotrophins and their receptors was assessed by relative quantification using real-time RT-PCR. Our results demonstrated that ischemia caused a significant decrease in gene expression in the hippocampus. Semax and PGP treatment affected the expression of neurotrophins and their receptors predominantly in the frontal cortex and hippocampus of the ischemized animals. In the frontal cortex, Semax treatment resulted in a decrease of mRNA level of neurotrophin receptors, while PGP treatment increased the level of these mRNA. Maximal neuroprotective effect of both peptides was observed in the hippocampus 12 h after occlusion. A decrease of gene expression of neurotrophins and their receptors caused by the occlusion was overcome by Semax and PGP. These results clarify the mechanism of Semax action and reveal certain features of mRNA expression of neurotrophins and their receptors under experimental conditions.  相似文献   

2.
Neurotrophins regulate key function of nervous tissue cells. Analysis of neurotrophins mRNA expression is an appropriate tool to assess therapeutic efficiency of the anti-stroke drugs. We have analyzed the effect of synthetic peptide semax and its C-terminal Pro-Gly-Pro tripeptide upon mRNAs expression of neurotrophins Ngf, Bdrf, Nt-3 and their receptors TrkA, TrkB, TrkC, p75 in rat frontal lobes, hippocampus and cerebellum after bilateral common carotid artery occlusion. The animals were decapitated 30 min, 1, 2, 4, 8, 12, 24 h after the operation. The mRNA expression of neurotrophins and their receptors was assessed by relative quantification using real-time RT-PCR. Our showed that ischemia causes a significant decrease in gene expression in the hippocampus. Semax and PGP affected the expression of neurotrophins and their receptors predominantly in the frontal cortex and hippocampus of the ischemized animals. In the frontal cortex, Semax treatment resulted in a decrease of mRNA level of receptors, while PGP treatment increased the level of these mRNA. Maximal neuroprotective effect of both peptides has been observed in the hippocampus 12 h after occlusion. A decrease of gene expression of neurotrophins and their receptors caused by the occlusion was overcome by Semax and PGP. These results clarify the semax mechanism of and present certain features of mRNA's expression of neurotrophins and their receptors in experimental conditions.  相似文献   

3.
4.
异丙酚对全脑缺血/再灌注大鼠海马iNOS表达的影响   总被引:1,自引:0,他引:1  
目的观察异丙酚对全脑缺血/再灌注大鼠海马神经元诱导型一氧化氮合酶(iNOS)表达的影响,探讨异丙酚对迟发性脑神经元损伤保护作用机制。方法采用Pulsinelli-Brierley四血管阻断法制备全脑缺血模型。全脑缺血20min再灌注24h后断头取脑,采用Western blot方法检测大鼠海马iNOS的蛋白表达。结果与缺血/再灌注组相比较,异丙酚处理组大鼠海马iNOS蛋白表达明显降低,存活的神经元数目明显增加,统计结果差异均有显著性(P<0.05或0.01)。结论异丙酚通过抑制iNOS蛋白表达对大鼠脑迟发性神经元损伤起保护作用。  相似文献   

5.
6.
目的:观察异丙酚对全脑缺血/再灌注大鼠海马细胞外谷氨酸(Glu)和抗坏血酸(AA)的影响,探讨异丙酚脑保护作用机制。方法:采用Pulsinelli-Brlerley四血管阻断法制备全脑缺血模型,应用脑微透析技术结合高效液相色谱(HPLc)检测大鼠海马细胞外Glu、AA含量的变化。结果:与缺血/再灌注组各对应时点相比较,异丙酚处理组大鼠海马细胞外Glu、AA含量明显降低,统计结果差异均有显著性(P〈0.05,或〈0.01)。结论:缺血/再灌注早期应用异丙酚不仅减少兴奋性氨基酸释放,还能清除自由基、抑制脂质过氧化反应而产生脑保护作用。  相似文献   

7.
The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H2O2), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pretreated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.  相似文献   

8.
Lou M  Ding MP  Wen SQ  Xia Q 《中国应用生理学杂志》2006,22(2):190-194,i0004
目的:研究1型血管紧张素Ⅱ受体阻滞剂厄贝沙坦对局灶性脑缺血的神经保护作用及其可能的细胞机制。方法:在激光多谱勒脑血流监测仪对局部脑血流的监测下,应用线栓法建立大鼠大脑中动脉阻塞模型。药物经侧脑室内微泵持续灌注雄性正常血压大鼠,术后行神经功能评分,测定梗死体积,并运用免疫组化染色观察活性Caspase-3及其下游多聚ADP-核糖聚合酶(PARP)p85裂解片断的改变,结合TUNEL,比较各组细胞凋亡情况。结果:厄贝沙坦明显改善大鼠的神经功能评分,第7d的梗死体积较对照组减少了42%,用药后缺血区的TUNEL阳性细胞数.荧光标记的活性Caspase-3以及PARP p85裂解片断表达均明显减少。结论:厄贝沙坦可改善局灶脑缺血的神经功能,抑制细胞凋亡可能是其神经保护机制之一。  相似文献   

9.
目的:观察右美托咪定预处理对全脑缺血/再灌注大鼠海马细胞外谷氨酸(Glu)、天门冬氨酸(Asp)含量及N-甲基-D-天冬氨酸(NMDA)受体1(NR1)表达的影响,探讨右美托咪定脑保护作用及其神经递质机制。方法:雄性Wistar大鼠54只,随机分为3组(n=18):假手术组、脑缺血/再灌注组和右美托咪定预处理组。用四血管闭塞法建立大鼠全脑缺血模型。收集清醒、缺血15 min及再灌注0~1 h微透析标本。于全脑缺血15 min再灌注1 h后,迅速断头取脑,采用免疫组化法和蛋白免疫印迹法检测海马NMDA受体NR1亚单位的表达情况。结果:与脑缺血/再灌注组相应时点比较,右美托咪定预处理组大鼠海马微透析液中Glu、Asp含量明显降低(P<0.05, 0.01);免疫组化和Western-blot法检测显示右美托咪定预处理组大鼠海马组织NMDA受体亚单位NR1表达明显受抑制(P<0.05, 0.01)。结论:右美托咪定预处理不仅减少脑缺血/再灌注时兴奋性氨基酸释放,还能抑制NMDA受体亚单位NR1的高表达而产生脑保护作用。  相似文献   

10.
In order to investigate changes in energy metabolism, neurotransmitters, and membrane disorder accompanying incomplete cerebral ischemia, a bilateral common carotid artery occlusion model of spontaneously hypertensive rats was utilized. We measured concentrations of ATP, phosphocreatine (PCr), lactate (Lac), glucose (Glu), acetylcholine (ACh), choline (Ch), and -aminobutyric acid (GABA) in both the cerebral cortex and the subcortical regions after 1 h ischemia, 2 h ischemia, and 2 h reflow following 2 h ischemia, and then examined changes in concentrations of these substances during and after incomplete cerebral ischemia. Also examined were interrelations of changes in these substance levels during ischemia. In the cerebral cortex, levels of ATP, PCr, Glu, and ACh decreased, and levels of Lac, Ch, and GABA increased during ischemia. After recirculation, levels of ATP, PCr, Ch, and GABA tended to return to the normal range. On the other hand, the Lac level remained in the ischemic range and the Glu level rose and greatly exceeded the normal range. With regard to ACh, most animals showed normal levels but some exceeded the normal range. Changes in the subcortical regions were qualitatively the same as those in the cerebral cortex during and after ischemia (except with Glu), but only smaller in degrees. Glu levels remained unchanged during ischemia. Correlation of the levels of these substances in the cerebral cortex was examined using normal and ischemic values. A high correlation was generally observed between ATP and other substance levels. The relations between ATP and either PCr or Glu levels were linear. The relation between ATP and ACh levels was logarithmic. The relations between ATP and either Lac, Ch, or GABA levels were exponential. Namely, ACh, Lac, Ch, and GABA levels stayed constant until ATP fell to some fixed low level, suggesting the existence of a threshold. High correlations were also observed among Lac, Ch, and GABA levels.  相似文献   

11.
12.
Cerebral ischemia is a major cause of adult disability and death worldwide. Evidence suggests that Bax-dependent initiation and activation of intrinsic apoptotic pathways contribute to ischemic brain injury. We investigated the Bax-inhibiting peptide VPALR, designed from the rat Ku70-Bax inhibiting domain, on the apoptotic neuronal cell death and behavioral deficits following global cerebral ischemia. The pentapeptide was infused into the left lateral ventricle of the rat brain by intracerebroventricular (i.c.v.) injection 1 h after cerebral ischemia, and results showed that it highly permeated hippocampal neurons and bound to Bax protein in vivo. Post-treatment with VPALR reduced the delayed neuronal damage by approximately 78% compared to the non-treated ischemic control and scrambled peptide-treated rats. TUNEL analysis revealed that VPALR markedly reduced the ischemia-induced increase in apoptotic neuronal death in rat hippocampal CA1 region. VPALR post-treatment also significantly attenuated Bax activation and its mitochondrial translocation as compared with scrambled peptide-treated animals. Concomitantly, Bax-inhibiting peptide-treated rats showed reduced cytochrome c release from mitochondria to cytosol and reduced caspase-3 activation in response to cerebral ischemia, indicating that activation of the intrinsic apoptotic pathway was reduced. Furthermore, Bax-inhibiting peptide improved spatial learning and memory performance in the Morris water maze, which was seriously affected by global cerebral ischemia. In conclusion, Bax inhibition by cell-permeable pentapeptides reduced apoptotic neuronal injury in the hippocampal CA1 region and behavioral deficits following global ischemia. These results suggest that Bax is a potential target for pharmacological neuroprotection and that Bax-inhibiting peptide may be a promising neuroprotective strategy for cerebral ischemia.  相似文献   

13.
14.
海参多糖对急性不完全性脑缺血的保护及抗凝作用的研究   总被引:1,自引:0,他引:1  
目的:研究海参多糖(PSU)对大鼠急性不完全性脑缺血(AICI)损伤的保护作用及抗凝血作用。方法:SD大鼠60只,随机分为5组(n=12):假手术组、模型组、海参多糖低(30 mg/(kg.d))、中(60mg/(kg.d))、高(120mg/(kg.d))剂量组。双侧颈总动脉永久性结扎法复制大鼠急性不完全性脑缺血模型,观察海参多糖对大鼠行为障碍、脑组织含水量、血清C-反应蛋白(CRP)水平的变化情况,以及对凝血酶原时间(PT)、活化的部分凝血酶时间(APTT)、凝血酶时间(TT)和纤维蛋白原含量(FIB)等血液凝血指标的影响。结果:海参多糖可改善行为学障碍,减少脑组织含水量,降低血清CRP水平;可显著延长APTT,TT时间,减少FIB含量(P<0.05)。结论:海参多糖能明显减轻大鼠急性不完全性脑缺血损伤,并具有显著的抗凝血作用。  相似文献   

15.
16.
Suk K  Kim SY  Leem K  Kim YO  Park SY  Hur J  Baek J  Lee KJ  Zheng HZ  Kim H 《Life sciences》2002,70(21):2467-2480
In traditional Oriental medicine, Uncaria rhynchophylla has been used to lower blood pressure and to relieve various neurological symptoms. However, scientific evidence related to its effectiveness or precise modes of action has not been available. Thus, in the current study, we evaluated neuroprotective effects of U. rhynchophylla after transient global ischemia using 4-vessel occlusion model in rats. Methanol extract of U. rhynchophylla administered intraperitoneally (100-1000 mg/kg at 0 and 90 min after reperfusion) significantly protected hippocampal CA1 neurons against 10 min transient forebrain ischemia. Measurement of neuronal cell density in CA1 region at 7 days after ischemia by Nissl staining revealed more than 70% protection in U. rhynchophylla-treated rats compared to saline-treated animals. In U. rhynchophylla-treated animals, induction of cyclooxygenase-2 in hippocampus at 24 hr after ischemia was significantly inhibited at both mRNA and protein levels. Furthermore, U. rhynchophylla extract inhibited TNF-alpha and nitric oxide production in BV-2 mouse microglial cells in vitro. These anti-inflammatory actions of U. rhynchophylla extract may contribute to its neuroprotective effects.  相似文献   

17.
During severe incomplete brain ischemia caused by combined bilateral ligation of the general carotid arteries and blood pressure reduction to 50 Hg by blood withdrawal from the femoral artery, the cortex of cerebral hemispheres demonstrates, by the 60th minute of ischemia, a 15.4%-lowering of the content of total phospholipids (PL) and a 33.3%-increase in the content of malonyl dialdehyde (MDA). By the 30th minute of the postischemic period the content of total PL remains decreased, the content of monophosphoinositides (MPI) rises by 110.2%, whereas the content of MDA remains high. By the 60th minute of postischemia the content of total PL and MDA returns to the initial levels. However the content of MDA remains high as before.  相似文献   

18.
The cerebral ischemia and reperfusion rat model was employed in this experiment to study the rheological properties (i.e. viscosity, hematocrit, red blood cell deformability and thixotropic properties) of whole blood. The results of this study show that a significant relation exists between the duration of cerebral ischemia and reperfusion and the viscosity, hematocrit and thixotropic parameters of whole blood, but there is no significant influence on the deformability of RBC. Blood viscosity values declined gradually throughout the ischemia period, e.g., after 1h of ischemia, the values of whole blood viscosity under high, middle and low shear rates were 44, 28 and 23% lower than normal, respectively. Whereas after 1h of reperfusion, the values of viscosity increased rapidly to values 160, 57 and 41% higher than normal under the high, middle and low levels of shear rate, while the viscosity values after 12h of reperfusion tended to return to normal values. The values of hematocrit H and thixotropic parameter tau(0) and mu also gradually declined with the increase in the duration of ischemia, but increased significantly after 1h of reperfusion. The values of H, tau(0) and mu after 1h of reperfusion are significantly greater than that in the period of cerebral ischemia, the value of H, tau(0) is also higher than normal. With the increase in reperfusion time, H, tau(0) gradually returned to normal level, at the same time, mu also decreased.  相似文献   

19.
目的:探讨姜黄素对自发性高血压大鼠(SHR)脑缺血/再灌注后认知功能及海马神经元损伤和调解活化正常T细胞表达和分泌的趋化因子(RANTES)表达的影响。方法:雄性Wistar-Kyoto大鼠(WKY)和SHR,随机分为5组:假手术组(W-Sham、S-Sham)、缺血/再灌注组(W-I/R、S-I/R)和姜黄素组(S-Cur),各组按再灌注时间分为3h、12 h、1 d、3 d、7 d 5个亚组(n=6)。采用四血管阻断法制备全脑缺血/再灌注模型,HE染色观察海马CA1区神经细胞形态,Nissl染色计数海马CA1区平均锥体细胞密度,ELISA法检测海马RANTES表达,于再灌注后7 d观察行为学。结果:与假手术组大鼠比较,缺血/再灌注组大鼠学习和记忆能力下降,海马CA1区神经元损伤加重,海马RANTES蛋白表达上调(P〈0.05);与W-I/R大鼠比较,S-I/R大鼠学习和记忆能力下降,海马CA1区神经元损伤加重,海马RANTES蛋白表达上调(P〈0.05);姜黄素组大鼠学习和记忆能力明显改善,海马CA1区神经元损伤减轻,海马RANTES蛋白表达下调(P〈0.05)。结论:缺血/再灌注更易导致SHR海马神经元损伤。姜黄素减轻SHR脑缺血/再灌注海马神经元损伤,其机制可能与抑制RANTES蛋白的表达有关。  相似文献   

20.
目的:探讨参附注射液对大鼠全脑缺血/再灌注损伤的保护作用及其机制。方法:将SD雄性大鼠40只,随机分为4组(n=10):假手术组、模型对照组、尼莫地平组(30 mg/kg)和参附注射液组(10 mg/kg)。采用Pulsinelli’s四动脉阻断法造成全脑缺血/再灌注损伤模型(CI/R),分别于手术前1 d,术前1 h和再灌注前30 min给药,共3次。分别用高效液相色谱法测定脑组织谷氨酸(Glu)、天冬氨酸(Asp)和甘氨酸(Gly)含量,原子吸收分光光度测定Ca2+含量,干湿重法测定脑组织含水量,化学比色法测定脑组织超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量。结果:与假手术组比较,CI/R模型组大鼠脑组织Glu、Ca2+、MDA含量和含水量明显升高(P<0.05,P<0.01),SOD活性明显降低(P<0.05);参附注射液能显著降低脑组织Glu、Ca2+含量和含水量(P<0.05,P<0.01),显著升高SOD活性及SOD/MAD比值(P<0.05)。结论:参附注射液防治脑缺血/再灌注损伤的机制与降低兴奋性氨基酸(EAA)毒性、阻滞Ca2+超载和提高抗氧化能力有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号