首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiscus EL 《Plant physiology》1986,80(3):752-759
Volume (Jv) and solute (Js) fluxes through Phaseolus root systems were observed over a 24-hour period. The volume flux was varied in a pressure chamber by altering the hydrostatic pressure in 10 steps, from 0 to 0.41 megapascals. All root systems showed strong diurnal peaks in volume flux. The five transport coefficients (σ, ω, Js*, Lp, and π*) were estimated from a nonlinear least squares algorithm. Analysis of the data revealed that all the coefficients exhibited a diurnal rhythm. When the total differential of the volume flux was considered it was possible to show that the diurnal changes in volume flux were due to a complex interaction between the diurnally shifting coefficients with the role of each highly dependent on the level of volume flux. At low volume fluxes, ω, Js*, and π* accounted for nearly all the diurnal change in volume flux. At high volume fluxes, however, the major influence shifted to Lp and π*, while ω and Js* became relatively unimportant. Thus, π* was the only coefficient of interest across the entire range of Jv and appeared to be the single most important one in determining the diurnal rhythm of Jv under conditions of a constant applied pressure.  相似文献   

2.
Transport of l-proline into Saccharomyces cerevisiae K is mediated by two systems, one with a KT of 31 μM and Jmax of 40 nmol · s?1 · (g dry wt.)?1, the other with KT > 2.5 mM and Jmax of 150–165 nmol · s?1 · (g dry wt.)?1, The kinetic properties of the high-affinity system were studied in detail. It proved to be highly specific, the only potent competitive inhibitors being (i) l-proline and its analogs l-azetidine-2-carboxylic acid, sarcosine, d-proline and 3,4-dehydro-dl-proline, and (ii) l-alanine. The other amino acids tested behaved as noncompetitive inhibitors. The high-affinity system is active, has a sharp pH optimum at 5.8–5.9 and, in an Arrhenius plot, exhibits two inflection points at 15°C and 20–21°C. It is trans-inhibited by most amino acids (but probably only the natural substrates act in a trans-noncompetitive manner) and its activity depends to a considerable extent on growth conditions. In cells grown in a rich medium with yeast extract maximum activity is attained during the stationary phase, on a poor medium it is maximal during the early exponential phase. Some 50–60% of accumulated l-proline can leave cells in 90 min (and more if washing is done repeatedly), the efflux being insensitive to 0.5 mM 2,4-dinitrophenol and uranyl ions, to pH between 3 and 7.3, as well as to the presence of 10–100 mM unlabeled l-proline in the outside medium. Its rate and extent are increased by 1% d-glucose and by 10 μg nystatin per ml.  相似文献   

3.
Lumen to bath J 12/C 1 and bath to lumen J 21/ C 2 fluxes per unit concentration of 19 probes with diameters (d m) ranging from 3.0–30.0 Å (water, urea, erythritol, mannitol, sucrose, raffinose and 13 dextrans with d m 9.1–30.0 Å) were measured during volume secretion (J v ) in the upper segment of the Malpighian Tubule of Rhodnius by perfusing lumen and bath with 14C or 3H-labeled probes. J net=(J 12/C 1J 21/C 2) was studied as a function of J v · J v was varied by using different concentrations of 5-hydroxy tryptamine. J net for 3H-water was not different from J v We found: (i) A strong correlation between J net and J v for 8 probes d m =3.0–11.8 Å (group a probes), indicating that the convective component of J net is more important than its diffusive component and than unstirred layers effects which are negligible. Therefore group a probes are solvent dragged as they cross the epithelium, (ii) There is no correlation between J net and J v for 11 probes with d m=11.8–30 Å (group b). Therefore these probes must cross the epithelium by diffusion and not by solvent drag, (iii) In a plot of J net/J v vs. d m group a probes show a steep linear relation with a slope = –0.111, while for group b probes the slope is –0.002. Thus there is a break between groups a and b in this plot. We tried to fit the data with models for restricted diffusion and convention through cylindrical or parallel slit pathways. We conclude that (i) group a probes are dragged by water through an 11.0 Å-wide slit, (ii) Most of J v must follow an extracellular noncytosolic pathway, (iii) Group b probes must diffuse through a 42 Å-wide slit, (iv) A cylindrical pathway does not fit the data.E.G. is a Visiting Scientist at IVIC. It is a pleasure to thank Drs. A.E. Hill and Bruria Shachar-Hill for their suggestion of the use of dextrans, their instruction and help with the dextran separation technique, and their extensive discussions. Dr. R. Apitz, Mr H. Rojas and Mrs. Fulvia Bartoli were most helpful with suggestions during the course of the experimental work. Mr. Jose Mora was fundamental help with the equipment. Mrs. Lelis Ochoa and Mr. Luis F. Alvarez helped with some of the drawings. This work was partially supported by CONICIT, Fundación Polar and CDCH of UCV. It is a pleasure to thank Dr. H. Passow and Dr. K.J. Ullrich at the Max Planck Institut für Biophysik (Frankfurt/Main) where this work was initiated.  相似文献   

4.
Penicillin G (2%, w/v in phosphate buffer, pH 8) was hydrolysed in a flow-through, miniature electro-membrane reactor with the penicillin G acylase immobilized in 5% (w/v) polyacrylamide (diam. 10 mm, thickness 2.6 mm, enzyme activity 24 U ml–1). The conversion of penicillin G increased from 0.15 to almost 0.5 when the electric current applied to the reactor was changed from –600 to +600 A/m2 with a substrate residency of 1 h. Symbols and abbreviations c j p & concentration of component j in product stream (M) c j s & concentration of component j in substrate stream (M) c s o & substrate concentration at reactor inlet (M) C j p=c j p/c S 0 & scaled concentration of component j in product stream C j s=c j s/c S 0 & scaled concentration of component j in substrate stream i & electric current density (A/m2) j & reaction component, j P, Q or S P & main reaction product (6-aminopenicillanic acid) PGA & penicillin G acylase Q & side reaction product (phenylacetic acid) S & substrate (penicillin G) Y s=C P s+C P p & substrate conversion & mean residence time of substrate and product streams in reactor (h) =C Q s+C Q p+C S s+C S s & check-sum of scaled concentrations =C P p/(C P s+C P p) & separation factor of 6-aminopenicillanic acid (0 1)  相似文献   

5.
The involvement of second messengers in modulating Schistocerca gregaria rectal ion and fluid transport was investigated using two in vitro bioassay systems: everted rectal sacs and rectal flat sheets. Various agents known to block or activate specific signal transduction pathways were employed in these bioassays. Cyclic AMP stimulated rectal fluid reabsorption (Jv) and Cl transport (Isc) to the same extent as aqueous extracts of corpus cardiacum storage lobes. Cyclic GMP also partially (50%) stimulated both rectal Jv and Isc. Exogenous Ca2+ was not required for the maintenance of rectal transport, indeed Ca2+ free conditions increased the amount of stimulatable Jv. There was some evidence indicating intracellular Ca2+ may play a minor role in controlling rectal transport. The phospholipase C mediated signal transduction pathway was not involved with the stimulation of rectal transport, and appeared to have an inhibitory role. Neuroparsins, antidiuretic neuropeptides from Locusta migratoria, showed no activity upon either S. gregaria rectal ion or fluid transport. The findings of this study show that the two closely related insects possess discrete antidiuretic factors which stimulate rectal transport via different signal transduction pathways. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Water flux through excised roots (Jv) is determined by root hydraulic conductance (Lp) and the ion flux to the xylem (Ji) that generates an osmotic gradient to drive water movement. These properties of roots are strongly temperature dependent. Abscisic acid (ABA) can influence Jv by altering Lp, Ji, or both. The effects of root temperature on responses to ABA were determined in two species differing in their temperature tolerances. In excised barley (Hordeum vulgare L.) roots, Jv was maximum at 25°C; 10 micromolar ABA enhanced Jv, primarily by increasing Lp, at all temperatures tested (15-40°C). In sorghum (Sorghum bicolor L.) roots, Jv peaked at 35°C; ABA reduced this optimum temperature for Jv to 25°C by increasing Lp at low temperatures and severely inhibiting Ji (dominated by fluxes of K+ and NO3) at warm temperatures. The inhibition of K+ flux by ABA at high temperature was mostly independent of external K+ availability, implying an effect of ABA on ion release into the xylem. In sorghum, ABA enhanced water flux through roots at nonchilling low temperatures but at the expense of tolerance of warm temperatures. These effects imply that ABA may shift the thermal tolerance range of roots of this heat-tolerant species toward cooler temperatures.  相似文献   

7.
Under equilibrium and nonequilibnum steady-stale conditions the spectral intensity of current noise SJ(f) generated by the transport of hydrophobic unions across lipid bilayer membranes was investigated. The experimental results were compared with different reaction models SJ(f) showed a characteristic increase proportional to f2 between frequency-independent tails at low and high frequencies. This gradient was found to be independent of applied voltage which indicates the contribution of a single voltage-dependent reaction step of ion translocation across the membrane From the shape of SJ(f) at low frequencies the rate constant of ion desorption from the membrane into the aqueous phase could be estimated. Unambiguous evidence for the application of a general model, which includes the coupling of slow ion diffusion in the aqueous phase to ion adsorption/desorption at the membrane interface, could not be obtained from the low-frequency shape of SJ(f). The shot noise of this ion transport determines the amplitude of SJ(f) at high frequencies which decreases with increasing voltage applied. Analysis of voltage-jump current-relaxation experiments and of current noise carried cut on one membrane yielded significant differences of the derived ion partition coefficient. This deviation is qualitatively described on the basis of incomplete reaction steps.  相似文献   

8.
In this paper, the authors investigate the membrane transport of aqueous non-electrolyte solutions in a single-membrane system with the membrane mounted horizontally. The purpose of the research is to analyze the influence of volume flows on the process of forming concentration boundary layers (CBLs). A mathematical model is provided to calculate dependences of a concentration polarization coefficient (ζ s ) on a volume flux (J vm ), an osmotic force (Δπ) and a hydrostatic force (ΔP) of different values. Property ζ s ?=?f(J vm ) for J vm ?>?0 and for J vm ?≈?0 and property ζ s ?=?fC 1) are calculated. Moreover, results of a simultaneous influence of ΔP and Δπ on a value of coefficient ζ s when J vm ?=?0 and J vm ?≠?0 are investigated and a graphical representation of the dependences obtained in the research is provided. Also, mathematical relationships between the coefficient ζ s and a concentration Rayleigh number (R C ) were studied providing a relevant graphical representation. In an experimental test, aqueous solutions of glucose and ethanol were used.  相似文献   

9.
K. Katou  T. Taura  M. Furumoto 《Protoplasma》1987,140(2-3):123-132
Summary The mechanism of water movement across roots is, as yet, not well understood. Some workable black box theories have already been proposed. They, however, assumed unrealistic cell membranes with low values of , or were based on a poor anatomical knowledge of roots. The role of root stele in solute and water transport seems to be especially uncertain. An attempted explanation of the nature of root exudation and root pressure by applying the apoplast canal theory (Katou andFurumoto 1986 a, b) to transport in the root stele is given. The canal equations are solved for boundary conditions based on anatomical and physiological knowledge of the root stele. It is found that the symplast cell membrane, cell wall and net solute transport into the wall apoplast are the essential constituents of the canal system. Numerical analysis shows that the canal system enables the coupled transport of solutes and water into a xylem vessel, and the development of root pressure beyond the level predicted by the osmotic potential difference between the ambient medium and the exudate. Observations on root exudation and root pressure previously reported seem to be explained quite well. It is concluded that the movement of water in the root stele although apparently active is essentially osmotic.Abbreviations J v ex volume exudation per root surface - J0 non-osmotic exudation - Lr overall radial hydraulic conductivity of an excised root - reflection coefficient - Cs difference in the osmotic concentration between the bathing medium and the exudate - R gas constant - T absolute temperature - CK molar concentration of K+ - CCl molar concentration of Cl - Cj molar concentration of ion species j - Pj membrane permeability of ion j - zj valence of ion j - F Faraday constant - Vix intracellular electric potential with reference to the canal  相似文献   

10.
The quantity of carbon dioxide (CO2) emissions from inland waters into the atmosphere varies, depending on spatial and temporal variations in the partial pressure of CO2 (pCO2) in waters. Using 22,664 water samples from 851 boreal lakes and 64 boreal streams, taken from different water depths and during different months we found large spatial and temporal variations in pCO2, ranging from below atmospheric equilibrium to values greater than 20,000???atm with a median value of 1048???atm for lakes (n?=?11,538 samples) and 1176???atm for streams (n?=?11,126). During the spring water mixing period in April/May, distributions of pCO2 were not significantly different between stream and lake ecosystems (P?>?0.05), suggesting that pCO2 in spring is determined by processes that are common to lakes and streams. During other seasons of the year, however, pCO2 differed significantly between lake and stream ecosystems (P?<?0.0001). The variable that best explained the differences in seasonal pCO2 variations between lakes and streams was the temperature difference between bottom and surface waters. Even small temperature differences resulted in a decline of pCO2 in lake surface waters. Minimum pCO2 values in lake surface waters were reached in July. Towards autumn pCO2 strongly increased again in lake surface waters reaching values close to the ones found in stream surface waters. Although pCO2 strongly increased in the upper water column towards autumn, pCO2 in lake bottom waters still exceeded the pCO2 in surface waters of lakes and streams. We conclude that throughout the year CO2 is concentrated in bottom waters of boreal lakes, although these lakes are typically shallow with short water retention times. Highly varying amounts of this CO2 reaches surface waters and evades to the atmosphere. Our findings have important implications for up-scaling CO2 fluxes from single lake and stream measurements to regional and global annual fluxes.  相似文献   

11.
Summary Activation of protein kinase C has been shown to cause both stimulation and inhibition of transport processes in the brush-border membrane and renal tubule. This study was designed to examine the dose-response nature and time-dependent effect of 4 -phorbol-12-myristate-13-acetate (PMA) on the rates of bicarbonate absorption (J HCO3) and fluid absorption (J v) in the proximal convoluted tubule (PCT) of rat kidney. Bicarbonate flux was determined by total CO2 changes between the collected fluid and the original perfusate as analyzed by microcalorimetry. Luminal perfusion of PMA (10–10 10–5 M) within 10 min caused a significant increase ofJ HCO3 andJ v. A peaked curve of the dose response was observed with maximal effect at 10–8 M PMA on both bicarbonate and fluid reabsorption, which could be blocked completely by amiloride (10–3 m) and EIPA (10–5 M). On the other hand, with an increase of perfusion time beyond 15 min, PMA (10–8 and 10–6 M) could inhibitJ HCO3 andJ v. Amiloride (10–3 M) or EIPA (10–5 M) significantly inhibitsJ HCO3 andJ v, while there is no additive effect of PMA and amiloride or EIPA on PCT transport. An inactive phorbol-ester, 4-phorbol, that does not activate protein kinase C, had no effects onJ HCO3 andJ v. Capillary perfusion of PMA (10–8 M) significantly stimulate bothJ HCO3 andJ v; however, PMA did not affect glucose transport from either the luminal side or basolateral side of the PCT. These results indicate that activation of endogenous protein kinase C by PMA could either stimulate or inhibit both bicarbonate and fluid reabsorption in the PCT dependent on time and dose, and these effects are through the modulation of Na+/H exchange mechanism.  相似文献   

12.
Standard approach to membrane transport generated by osmotic andhydrostatic pressures, developed by Kedem and Katchalsky, is based onprinciples of thermodynamics of irreversible processes. In this paper wepropose an alternative technique. We derive transport equations from fewfairly natural assumptions and a mechanistic interpretation of the flows.In particular we postulate that a sieve-type membrane permeability isdetermined by the pore sizes and these are random within certain range.Assuming that an individual pore is either permeable or impermeable tosolute molecules, the membrane reflection coefficient depends on the ratioof permeable and impermeable pores. Considering flows through permeableand impermeable pores separately, we derive equations for the total volumeflux, solute flux and the solvent flux across the membrane. Comparing themechanistic equations to the Kedem-Katchalsky equations we find the formereasier to interpret physically. Based on the mechanistic equations we alsoderive a correlation relation for the membrane transport parameters L p,, and . This relation eliminates the need for experimentaldetermination of all three phenomenological parameters, which in somecases met with considerable difficulties.  相似文献   

13.
The lateral diffusion of the excimer-forming probe pyrene decanoic acid has been determined in erythrocyte membranes and in vesicles of the lipid extracts. The random walk of the probe molecules is characterized by their jump frequency, vj, within the lipid matrix. At T = 35°C a value of vj = 1.6 · 103 s?1 is found in erythrocyte membranes. A somewhat slower mobility is determined in vesicles prepared from lipid extracts of the erythrocyte membrane. Depending on structure and charge of the lipids we obtain jump frequencies between 0.8 · 108 s?1 and 1.5 · 108 s?1 at T = 35°C. The results are compared with jump frequencies yielded in model membranes.The mobility of molecules perpendicular to the membrane surface (transversal diffusion) is investigated. Erythrocyte ghosts doped with pyrene phosphatidylcholine were mixed with undoped ghosts in order to study the exchange kinetics of the probe molecule. A fast transfer between the outer layers of the ghost cells (τ12 = 1.6 min at T = 37°C) is found. The exchange process between the inner and the outer layer of one erythrocyte ghost (flip-flop process) following this fast transfer occurs with a half-life time value of t12 = 100 min at T = 37°C.The application of excimer-forming probes presumes a fluid state of the membrane. Therefore we investigated the phase transition behaviour using the excimer technique. Beside a thermotropic phase transition at T = 23°C and T = 33°C we observed an additional fluidity change at T = 38°C in erythrocyte ghosts. This transition is attached to a separation of the boundary lipid layer from the intrinsic proteins. No lipid phase transition is observed in liposomes from isolated extracts of the erythrocyte membrane with our methods.  相似文献   

14.
The in-situ formed hydrazone Schiff base ligand (E)-N′-(2-oxy-3-methoxybenzylidene)benzohydrazide (L2−) reacts with copper(II) acetate to a tetranuclear open cubane [Cu(L)]4 complex which crystallizes as two symmetry-independent (Z′ = 2) S4-symmetrical molecules in different twofold special positions with a homodromic water tetramer. The two independent (A and B) open- or pseudo-cubanes with Cu4O4 cores of 4 + 2 class (Ruiz classification) each have three different magnetic exchange pathways leading to an overall antiferromagnetic coupling with J1B = J2B = −17.2 cm−1, J1A = −36.7 cm−1, J2A = −159 cm−1, J3A = J3B = 33.5 cm−1, g = 2.40 and ρ = 0.0687. The magnetic properties have been analysed using the H = −Σi,jJij(SiSj) spin Hamiltonian.  相似文献   

15.
We present a new molecular dynamics method for studying the dynamics of open systems. The method couples a classical system to a chemical potential reservior. In the formulation, following the extended system dynamics approach, we introduce a variable, v to represent the coupling to the chemical potential reservoir. The new variable governs the dynamics of the variation of number of particles in the system. The number of particles is determined by taking the integer part of v. The fractional part of the new variable is used to scale the potential energy and the kinetic energy of an additional particle: i.e., we introduce a fractional particle. We give the ansatz Lagrangians and equations of motion for both the isothermal and the adiabatic forms of grand molecular dynamics. The averages calculated over the trajectories generated by these equations of motion represent the classical grand canonical ensemble (μVT) and the constant chemical potential adiabatic ensemble (μVL) averages, respectively. The microcanonical phase space densities of the adiabatic and isothermal forms the molecular dynamics method are shown to be equivalent to adiabatic constant chemical potential ensemble, and grand canonical ensemble partition functions. We also discuss the extension to multi-component systems, molecular fluids, ionic solutions and the problems and solutions associated with the implementation of the method. The statistical expressions for thermodynamic functions such as specific heat; adiabatic bulk modulus, Grüneissen parameter and number fluctuations are derived. These expressions are used to analyse trajectories of constant chemical potential systems.  相似文献   

16.
Hydrochlorothiazide (HCTZ) was shown to inhibit the transepithelial NaCl transport and the apical Na+-Cl? symport and to depolarize the apical membrane potential in the rabbit gallbladder epithelium. The depolarization was likely related to the opening of a Cl? conductance. To better understand whether an apical Cl? leak is involved in the mechanism of action of HCTZ, the transapical Cl? backflux was measured radiochemically by the washout technique. The gallbladder wall, pretreated with pronase on the serosal side to homogenize the subepithelium, was loaded with 36Cl? on the luminal side; mucosal and serosal 36Cl? effluxes (J m , J s ) were then measured every 2 min. The pretreatment with pronase did not alter the membrane potentials and the selectivity of the epithelium. Under control conditions and the tissue in steady-state, J m and J s time courses were each described by two exponential decays (A,B); the rate constants, k A and k B , were 0.71 ±0.03 and 0.16±0.01 min?1, respectively, and correspondingly the half-times (t 1 2A , t 1 2B ) were 1.01±0.05 and 5.00±0.44 min (n=10); these parameters were not significantly different for J m and J s time courses. J s was always greater than J m (J s /J m =2.02±0.22 and 1.43 ±0.17 for A and B decays). Under SCN? treatment in steady-state conditions, both J m and J s time courses were described by only one exponential decay, the component B being abolished. Moreover t 1 2A was similar to that predictable for the subepithelium. It follows that it is the component B which exits the epithelial compartment. Based on the intracellular specific activity and 36Cl? J m B at 0 min time of the washout experiment, the cell-lumen Cl? backflux in steady-state was calculated to be equal to about 2 μmol cm?2hr?1, in agreement with the value indirectly computable by other techniques. The experimental model was well responsive to different external challenges (increases in media osmolalities; luminal treatment with nystatin). HCTZ (2.5 · 10?4 m) largely increased 36Cl? J m B . The increase was abolished by luminal treatment with 10?4 m SITS, which not only brought back the efflux time courses to the ones observed under control conditions but even increased J s /J m of the cellular component, an indication of a reduced J m B . It is concluded that HCTZ opens an apical, SITS-sensitive Cl? leak, which contributes to dissipate the intracellular Cl? accumulation and to inhibit the NaCl transepithelial transport. Moreover, the drug is likely to reduce the basal electroneutral Cl? backflux supported by Na+-Cl? cotransport, in agreement with the inhibition of the cotransport itself.  相似文献   

17.
1. We measured NH4+ and PO4?3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm respiration and enzyme activity and channel geomorphology in streams draining forested catchments in the northwestern (Northern California Coast Range and Cascade Mountains) and southeastern (Appalachian and Ouachita mountains) regions of the United States. Our goal was to use measures of biofilm enzyme activity and nutrient uptake to assess nutrient limitation in forested streams across broad regional scales. 2. Geomorphological attributes, biofilm enzyme activity and NH4+ uptake were significantly different among streams in the four study units. There was no study unit effect on PO4?3 uptake. The proportion of the stream channel in pools, % woody debris, % canopy closure, median substrate size (d50), stream width (w), stream velocity (v), discharge (Q), dispersion coefficient (D) and transient storage (As/A) were correlated with biofilm enzyme activity and nutrient uptake in some study units. 3. Canonical correlation analyses across study units revealed significant correlations of NH4Vf and PO4Vf with geomorphological attributes (w, d50, D, % woody debris, channel slope and % pools) and biofilm phosphatase activity. 4. The results did not support our expectation that carbon processing rates by biofilm microbial assemblages would be governed by stream nutrient availability or that resulting biofilm enzyme activity would be an indicator of nutrient uptake. However, the relative abundances of peptidases, phosphatase and glycosidases did yield insight into potential N‐, P‐ and C‐limitation of stream biofilm assemblages, and our use of biofilm enzyme activity represents a novel application for understanding nutrient limitations in forested streams. 5. Regressions of Vf and U against ambient NH4+ and PO4?3 indicated that none of our study streams was either NH4+ or PO4?3 saturated. The Appalachian, Ouachita and Coastal streams showed evidence of NH4+ limitation; the Ouachita and Coastal streams were PO4?3 limited. As a correlate of nutrient limitation and saturation in streams, ratios of total aminopeptidase and phosphatase activities and the ratio of NH4U to PO4U indicate these forested streams are predominantly N‐limited, with only the streams draining Ouachita and Coastal catchments demonstrating appreciable levels of P‐limitation. 6. Our results comparing the stoichiometry of microbial enzyme activity with nutrient uptake ratios and with the molar ratios N and P in stream waters suggest that biological limitations are not strictly the result of stream chemistry and that the assessments of nutrient limitations in stream ecosystems should not be based on chemistry alone. 7. Our present study, along with previous work in streams, rivers and wetlands, suggests that microbial enzyme activities, especially the ratios of total peptidases to phosphatase, are useful indicators of nutrient limitations in aquatic ecosystems.  相似文献   

18.
This paper describes experiments designed to evaluate Na+ and Cl- transport in isolated proximal straight tubules from rabbit kidneys. When the perfusing solution was Krebs-Ringer buffer with 25 mM HCO3- (KRB) and the bath contained KRB plus 6% albumin, net volume reabsorption (Jv, nl min-1 mm-1 was -0.46 ± 0.03 (SEM); Ve, the spontaneous transepithelial potential difference, was -1.13 ± 0.05 mV, lumen negative. Both Jv, and Ve, were reduced to zero at 21°C or with 10-4 M ouabain, but Jv, was not HCO3- dependent. Net Na+ reabsorption, measured as the difference between 22Na+ fluxes, lumen to bath and bath to lumen, accounted quantitatively for volume reabsorption, assuming the latter to be an isotonic process, and was in agreement with the difference between lumen to bath 22Na+ fluxes during volume reabsorption and at zero volume flow. The observed flux ratio for Na+ was 1.46, and that predicted for a passive process was 0.99; thus, Na+ reabsorption was rationalized in terms of an active transport process. The Cl- concentration of tubular fluid rose from 113.6 to 132.3 mM during volume reabsorption. Since Ve, rose to +0.82 mV when tubules were perfused with 138.6 mM Cl- solutions, Ve may become positive when tubular fluid Cl- concentrations rise during volume reabsorption. The permeability coefficients PNa and PCl computed from tracer fluxes were, respectively, 0.23 x 10-4 and 0.73 x 10-4 cm s-1. A PNa/PCl ratio of 0.3 described NaCl dilution potentials at zero volume flow. The magnitudes of the potentials were the same for a given NaCl gradient in either direction and PNa/PCl was constant in the range 32–139 mM NaCl. We infer that the route of passive ion permeation was through symmetrical extracellular interfaces, presumably tight junctions, characterized by neutral polar sites in which electroneutrality is maintained by mobile counterions.  相似文献   

19.
In this study, chlorophyll fluorescence parameters (?F/F m′, F v/F m) and oxygen evolution of female vegetative tissues of Porphyra katadai var. hemiphylla in unisexual culture (FV) and in mixed culture with male vegetative tissues (FV-M) were followed at 5–20 °C, 10 and 80 μmol photons m?2 s?1. The formation of reproductive tissues was closely correlated with decreasing photosynthetic activities. At the same temperature the tissues cultured under 80 μmol photons m?2 s?1 showed a greater extent of maturation than those under 10 μmol photons m?2 s?1, and their decrease in photosynthesis was also larger. Under the same light intensity the extent of maturation increased with increasing temperature, and both cultures showed higher values of ?F/F m′ and F v/F m at 10 and 15 °C, while their oxygen evolution became negative at 15–20 °C during the later period. Under the same culture condition the maturation of FV-M culture was relatively faster than that of FV culture, while their photosynthetic activity, especially ?F/F m′, was lower.  相似文献   

20.
Urbanization has resulted in the extensive burial and channelization of headwater streams, yet little is known about the impacts of stream burial on ecosystem functions critical for reducing downstream nitrogen (N) and carbon (C) exports. In order to characterize the biogeochemical effects of stream burial on N and C, we measured NO3 ? uptake (using 15N-NO3 ? isotope tracer releases) and gross primary productivity (GPP) and ecosystem respiration (ER) (using whole stream metabolism measurements). Experiments were carried out during four seasons, in three paired buried and open stream reaches, within the Baltimore Ecosystem Study Long-term Ecological Research site. Stream burial increased NO3 ? uptake lengths by a factor of 7.5 (p < 0.01) and decreased NO3 ? uptake velocity and areal NO3 ? uptake rate by factors of 8.2 (p < 0.05) and 9.6 (p < 0.001), respectively. Stream burial decreased GPP by a factor of 11.0 (p < 0.01) and decreased ER by a factor of 5.0 (p < 0.05). From fluorescence Excitation Emissions Matrices analysis, buried streams were found to have significantly altered C quality, showing less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage (TS) and water temperatures. Differences in NO3 ? uptake, GPP, and ER in buried streams, were primarily explained by decreased TS, light availability, and C quality, respectively. At the watershed scale, we estimate that stream burial decreases NO3 ? uptake by 39 % and C production by 194 %. Overall, our results suggest that stream burial significantly impacts NO3 ? uptake, stream metabolism, and the quality of organic C exported from watersheds. Given the large impacts of stream burial on stream ecosystem processes, daylighting or de-channelization of streams, through hydrologic floodplain reconnection, may have the potential to alter ecosystem functions in urban watersheds, when used appropriately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号