首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seed dispersal patterns of bird-dispersed trees often show substantial seasonal and annual variation due to temporal changes in frugivorous bird and bird-dispersed fruit distributions. Elucidating such variation and how it affects plant regeneration is important for understanding the evolution and seed dispersal maintenance strategies of these plants. In this study, we investigated the seed dispersal quantity and distance of a bird-dispersed plant, Swida controversa, for 2 years and detected large seasonal variations in dispersal pattern. Early in the fruiting season, short seed dispersal distance and large amounts of fruit consumption by birds (seed dispersal quantity) were observed. In contrast, late in the fruiting season, a long seed dispersal distance and small seed dispersal quantity were observed. This relationship between seed dispersal distance and quantity may help to maintain constant seed dispersal effectiveness during the long S. controversa fruiting season. Annual variation was also detected for both seed dispersal quantity and distance. More effective seed dispersal was achieved in the masting year, because both seed dispersal quantity and distance were greater than that in the non-masting year. These seed dispersal dynamics may contribute to the evolution and maintenance of S. controversa masting behavior. Thus, we identified substantial temporal variation on both seasonal and annual scales in the seed dispersal pattern of a bird-dispersed plant. The temporal variation in seed dispersal pattern revealed in this study probably plays a substantial role in the life history and population dynamics of S. controversa.  相似文献   

2.
Recruitment trade-offs and the evolution of dispersal mechanisms in plants   总被引:1,自引:1,他引:0  
In this study we place seed size vs. seed number trade-offs in the context of plant dispersal ability. The objective was to suggest explanations for the evolution of different seed dispersal mechanisms, in particular fleshy fruits, wind dispersal and the maintenance of unassisted dispersal. We suggest that selection for improved dispersal may act either by increasing the intercept of a dispersal curve (log seed number vs. distance) or by flattening the slope of the curve. 'Improved dispersal' is defined as a marginal increase in the number of recruits sited at some (arbitrary) distance away from the parent plant. Increasing the intercept of the dispersal curve, i.e. producing more seeds, is associated with a reduction in seed size, which in turn affects the recruitment ability, provided that this ability is related to seed size. If recruitment is related to seed size there will be a recruitment cost of evolving increased seed production. On the other hand, a flattening of the slope by evolving dispersal attributes is likely to be associated with a fecundity cost. An exception is wind dispersal where smaller (and hence more numerous) seeds may lead to more efficient dispersal. We derive two main predictions: If recruitment is strongly related to seed size, selection for improved dispersal acts on the slope of the dispersal curve, i.e. by favouring evolution of dispersal attributes on seeds or fruits. If, on the other hand, recruitment is only weakly related to seed size (or not related, or negatively related), selection for improved dispersal favours increased seed production. Despite its simplicity, the model suggests explanations for (i) why so many plant species lack special seed dispersal attributes, (ii) differences in dispersal spectra among plant communities, and (iii) adaptive radiation in seed size and dispersal attributes during angiosperm evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
王静  闫巧玲 《生态学杂志》2017,28(5):1716-1726
干扰在森林生态系统中普遍存在,并影响森林的更新和演替.动物传播种子是种子更新的必经阶段,其对森林干扰的响应在一定程度上能够预测未来的森林群落组成和结构变化,对于明确森林演替方向具有重要意义.本文论述了森林干扰对动物传播种子有效性(包括动物传播种子的数量和质量)影响研究的生态学意义,全面揭示了自然干扰(火干扰、林窗干扰等)和人为干扰(生境破碎化、狩猎、采伐等)对动物传播种子数量、传播距离以及传播后幼苗更新影响的研究进展,指出干扰通过影响动物种群动态,进而造成动物传播种子数量发生了改变,动物传播种子的距离对干扰的响应基本表现出轻微负相关;干扰对传播后幼苗更新的影响结果因干扰类型的不同而复杂多变,干扰迹地环境因子的变化也影响着传播后的种子萌发和幼苗更新.干扰对动物传播种子有效性影响研究中存在的问题,主要表现为火干扰迹地恢复过程、增益性的干扰(如抚育、间伐、林窗)等对种子传播有效性影响研究的匮乏,以及忽略了温带森林内的干扰对动物传播种子的影响等.今后,应开展干扰对种子传播有效性的长期研究;对于干扰多发地带的森林,应高度重视增益性干扰影响动物传播植物种子的研究.  相似文献   

4.
Differential seed dispersal, in which selfed and outcrossed seeds possess different dispersal propensities, represents a potentially important individual‐level association. A variety of traits can mediate differential seed dispersal, including inflorescence and seed size variation. However, how natural selection shapes such associations is poorly known. Here, we developed theoretical models for the evolution of mating system and differential seed dispersal in metapopulations, incorporating heterogeneous pollination, dispersal cost, cost of outcrossing and environment‐dependent inbreeding depression. We considered three models. In the ‘fixed dispersal model’, only selfing rate is allowed to evolve. In the ‘fixed selfing model’, in which selfing is fixed but differential seed dispersal can evolve, we showed that natural selection favours a higher, equal or lower dispersal rate for selfed seeds to that for outcrossed seeds. However, in the ‘joint evolution model’, in which selfing and dispersal can evolve together, evolution necessarily leads to higher or equal dispersal rate for selfed seeds compared to that for outcrossed. Further comparison revealed that outcrossed seed dispersal is selected against by the evolution of mixed mating or selfing, whereas the evolution of selfed seed dispersal undergoes independent processes. We discuss the adaptive significance and constraints for mating system/dispersal association.  相似文献   

5.
Diplochory is seed dispersal by a sequence of two or more steps or phases, each involving a different dispersal agent. Here, we describe five forms of diplochory and derive general characteristics of each phase of seed dispersal. The first and second phases of diplochory offer different benefits to plants. Phase one dispersal often results in escape from density-dependent seed and seedling mortality near the parent plant and can result in the colonization of habitat patches far from the parent. Phase two dispersal often moves seeds to discrete and predictable microsites, where the probability of seedling establishment is disproportionately high (i.e. directed dispersal). Diplochory appears to have evolved because combining two means of seed dispersal can increase the benefits of seed dispersal whilst reducing the likelihood of seed mortality.  相似文献   

6.
Seed dispersal distance is influenced by a variety of seed properties and functional responses of dispersers. However, to our knowledge, how and why seed dispersal distances are determined remains poorly understood. In the present study, seeds of sympatric tree species, Pinus koraiensis, Corylus mandshurica, Corylus heterophylla, and Quercus mongolica were released to investigate the effects of rodent abundance, seed type, and seed availability on seed dispersal. Our results showed that seeds of P. koraiensis were dispersed further than those of C. heterophylla and C. mandshurica regardless of the ambient rodent and seed abundances, reflecting a consistent effect of seed type on seed dispersal distances. Seed dispersal distance was greatly facilitated by lower per-capita seed abundance (the ratio of seeds to rodents); however, seed caching and cache survival were benefited from higher per-capita seed abundance. Although seed dispersal and seed caching of a particular tree species can be enhanced by its own seed availability, no consistent influence was detected at interspecific levels, reflecting different interspecific effects of seed availability on seed dispersal of sympatric seed species. Our results provide evidences that the effect of seed availability on seed dispersal should be evaluated in terms of per-capita seed abundance and interspecific effects, rather than the independent influence of seed or disperser abundances.  相似文献   

7.
外果皮厚度和种子大小对五种栎属橡子扩散的影响   总被引:1,自引:0,他引:1  
动物对种子的扩散和贮藏是一个复杂的生态学过程,常常受到种子特征的影响。有关种子特征如何影响动物对种子扩散,许多研究结果并非完全一致。我们于2009 年9 月在黑龙江东方红林场野外和围栏内释放五种栎属橡子(Quercus mongolica,Q.serrata var. brevipetiolata,Q. aliena,Q.variabilisQ. liaotungensis),研究种子特征对鼠类(Apodemus peninsulae, Clethrionomys rufocanus Tamias sibiricus)扩散和埋藏橡子的影响。野外释放结果表明:橡子大小和外果皮厚度显著影响鼠类对橡子的扩散和埋藏。鼠类偏向扩散和埋藏种皮厚的大橡子,种皮薄的小橡子则多被原地取食。种皮厚的大橡子扩散距离显著高于种皮薄的小橡子。然而,只有外果皮的厚度显著影响围栏内花鼠对橡子的扩散和埋藏,橡子大小并非主要的影响因素。种子特征影响种子扩散的效应可能在种群和群落水平上存在差异。  相似文献   

8.
In plants, genes may disperse through both pollen and seeds. Here we provide a first theoretical study of the mechanisms and consequences of the joint evolution of pollen and seed dispersal. We focus on hermaphroditic self-compatible species distributed in structured populations, assuming island dispersal of pollen and seeds among small patches of plants within large populations. Three traits are studied: the rate of among-patch seed dispersal, the rate of among-patch pollen dispersal, and the rate of within-patch pollen movement. We first analytically derive the evolutionary equilibrium state of each trait, dissect the pairwise selective interactions, and describe the joint three-trait evolutionary equilibrium under the cost of dispersal and kin competition. These results are then analytically and numerically extended to the case when selfed seeds suffer from depressed competitiveness (inbreeding depression, no heterosis). Finally individual-based simulations are used to account for a more realistic model of inbreeding load. Pollen movement is shown to generate opposite selection pressures on seed dispersal depending on spatial scale: within-patch pollen movement favors seed dispersal, whereas among-patch pollen dispersal inhibits seed dispersal. Seed dispersal selects for short-distance movements of pollen and it selects against long-distance dispersal. These interactions shape the joint evolution of these traits. Kin competition favors among-patch seed dispersal over among-patch pollen dispersal for low costs of within-patch pollen movement (and vice versa for significant costs of within-patch pollen movement). Inbreeding depression favors allogamy through high rates of within- and among-patch pollen movement. Surprisingly, it may select either for or against seed dispersal depending on the cost of among-patch pollen dispersal. Heterosis favors increased among-patch dispersal through pollen and seeds. But because these two stages inhibit each other, their joint evolution might lead to decreased seed dispersal in the presence of heterosis. Of crucial importance are the costs of dispersal.  相似文献   

9.
The exact identification of individual seed sources through genetic analysis of seed tissue of maternal origin has recently brought the full analytical potential of parentage analysis to the study of seed dispersal. No specific statistical methodology has been described so far, however, for estimation of the dispersal kernel function from categorical maternity assignment. In this study, we introduce a maximum-likelihood procedure to estimate the seed dispersal kernel from exact identification of seed sources. Using numerical simulations, we show that the proposed method, unlike other approaches, is independent of seed fecundity variation, yielding accurate estimates of the shape and range of the seed dispersal kernel under varied sampling and dispersal conditions. We also demonstrate how an obvious estimator of the dispersal kernel, the maximum-likelihood fit of the observed distribution of dispersal distances to seed traps, can be strongly biased due to the spatial arrangement of seed traps relative to source plants. Finally, we illustrate the use of the proposed method with a previously published empirical example for the animal-dispersed tree species Prunus mahaleb.  相似文献   

10.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   

11.
Despite the importance of seed dispersal in a plant's life cycle, global patterns in seed dispersal distance have seldom been studied. This paper presents the first geographically and taxonomically broad quantification of the latitudinal gradient in seed dispersal distance. Although there is substantial variation in the seed dispersal distances of different species at a given latitude, seeds disperse on average more than an order of magnitude further at the equator than towards the poles. This pattern is partially explained by plant life‐history traits that simultaneously associate with seed dispersal distance and latitude, including dispersal mode and plant height. The extended seed shadow of tropical plants could increase the distance between conspecific individuals. This could facilitate species coexistence and contribute to the maintenance of high plant diversity in tropical communities. The latitudinal gradient in dispersal distance also has implications for species’ persistence in the face of habitat fragmentation and climate change.  相似文献   

12.
13.
Prevailing directions of seed and pollen dispersal may induce anisotropy of the fine‐scale spatial genetic structure (FSGS), particularly in wind‐dispersed and wind‐pollinated species. To examine the separate effects of directional seed and pollen dispersal on FSGS, we conducted a population genetics study for a dioecious, wind‐pollinated, and wind‐dispersed tree species, Cercidiphyllum japonicum Sieb. et Zucc, based on genotypes at five microsatellite loci of 281 adults of a population distributed over a ca. 80 ha along a stream and 755 current‐year seedlings. A neighborhood model approach with exponential‐power‐von Mises functions indicated shorter seed dispersal (mean = 69.1 m) and much longer pollen dispersal (mean = 870.6 m), effects of dispersal directions on the frequencies of seed and pollen dispersal, and the directions with most frequent seed and pollen dispersal (prevailing directions). Furthermore, the distance of effective seed dispersal within the population was estimated to depend on the dispersal direction and be longest at the direction near the prevailing direction. Therefore, patterns of seed and pollen dispersal may be affected by effective wind directions during the period of respective dispersals. Isotropic FSGS and spatial sibling structure analyses indicated a significant FSGS among the seedlings generated by the limited seed dispersal, but anisotropic analysis for the seedlings indicated that the strength of the FSGS varied with directions between individuals and was weakest at a direction near the directions of the most frequent and longest seed dispersal but far from the prevailing direction of pollen dispersal. These results suggest that frequent and long‐distance seed dispersal around the prevailing direction weakens the FSGS around the prevailing direction. Therefore, spatially limited but directional seed dispersal would determine the existence and direction of FSGS among the seedlings.  相似文献   

14.
Pleistocene extinctions affected mainly large‐bodied animals, determining the loss or changes in numerous ecological functions. Evidence points to a central role of many extinct megafauna herbivores as seed dispersers. An important step in understanding the legacy of extinct mutualistic interactions is to evaluate the roles and effectiveness of megafauna herbivores in seed dispersal. Here we use morphological and ecophysiological allometries to estimate both quantitative and qualitative aspects of seed‐dispersal services likely provided by extinct megafauna. We developed a mechanistic model that encompasses four stages of seed dispersal – seed ingestion, gut retention, animal movement, and seed deposition. We estimate seed‐dispersal kernels through simulations to infer the role of Pleistocene megafauna in promoting long‐distance dispersal and examine how seed dispersal was affected by extinctions. Simulations suggest extinct large‐bodied frugivores would frequently disperse large seeds over a thousand meters, whereas smaller‐bodied frugivores are more likely to deposit the seeds over a few hundred meters. Moreover, events of long‐distance seed dispersal by the extinct megafauna would be up to ten times longer than long‐distance dispersal by smaller‐sized extant mammals. By estimating the combined distribution of seed dispersal distances considering all large‐bodied mammalian frugivores in specific South American Pleistocene assemblages we found that long‐distance dispersal contracted by at least two thirds after the megafauna died out. The disruption of long‐distance dispersal is expected to have consequences for recruitment, spatial and genetic structure of plant populations, population persistence and community composition. Promoting long‐distance seed dispersal was one among other salient features of extinct Pleistocene megafauna that reveal their influence on natural ecosystems. Modeling the consequences of megafaunal extinctions can offer quantitative predictions on the consequences of ongoing defaunation to plant populations and ecological communities.  相似文献   

15.
Long-distance seed dispersal in plant populations   总被引:3,自引:0,他引:3  
Long-distance seed dispersal influences many key aspects of the biology of plants, including spread of invasive species, metapopulation dynamics, and diversity and dynamics in plant communities. However, because long-distance seed dispersal is inherently hard to measure, there are few data sets that characterize the tails of seed dispersal curves. This paper is structured around two lines of argument. First, we argue that long-distance seed dispersal is of critical importance and, hence, that we must collect better data from the tails of seed dispersal curves. To make the case for the importance of long-distance seed dispersal, we review existing data and models of long-distance seed dispersal, focusing on situations in which seeds that travel long distances have a critical impact (colonization of islands, Holocene migrations, response to global change, metapopulation biology). Second, we argue that genetic methods provide a broadly applicable way to monitor long-distance seed dispersal; to place this argument in context, we review genetic estimates of plant migration rates. At present, several promising genetic approaches for estimating long-distance seed dispersal are under active development, including assignment methods, likelihood methods, genealogical methods, and genealogical/demographic methods. We close the paper by discussing important but as yet largely unexplored areas for future research.  相似文献   

16.
Although widespread among fungi, lichens, liverworts, and mosses, seed dispersal mechanisms operated by rain are unusual among flowering plants. Generally speaking, two mechanisms are involved in seed dispersal by rains: the splash-cup and the springboard. Here we describe a new seed dispersal mechanism operated by rain in a Neotropical rainforest herb Bertolonia mosenii Cogniaux (Melastomataceae). The study was carried out at the lowland Atlantic rainforest, southeastern Brazil. We experimentally demonstrate that rain is necessary to release the seeds from the capsules through what we call "squirt-corner" seed dispersal mechanism: when a raindrop strikes the mature fruit, the water droplet forces the seeds outward to the angles (corners) of the triangular capsule and the seeds are released. As far as we know squirt-corner represents a new rain-operated seed dispersal mechanism, and a novel seed dispersal mode both for Melastomataceae and for flowering plants from Neotropical forests.  相似文献   

17.
Representations are based on plant populations, continuously distributed over their habitats according to specified density patterns. Migration of genetic material takes place via pollen and seed dispersal. Monoecious plants with arbitrary rates of self-fertilization and dioecious plants are considered. The model was constructed with the intention of determining coefficients of inbreeding and kinship for all locations within the seed population after its dispersal over the habitat, assuming the respective genetic relationships of the parental generation to be known. To display the consequences of single components hidden in the general result, the following specifications have been treated: finite population size combined with random dispersal of seed, equilibrium states for hypothetically infinite population size with “limited” dispersal of pollen and seed, random dispersal of pollen, and random dispersal of seed.  相似文献   

18.
Seed morphological and wind dispersed characteristics of Pinus yunnanensis and Keteleeria evelyniana were compared in this study to clarify the relationship among seed morphological, dispersal characteristics and wind dispersal ability. The results showed that: 1)Seed wing loading had the greatest effect on the seed settlement velocity, but the effect of seed shape(the ratio of seed wing length to width) on it was unobvious. Seed morphological and dispersal characteristics of two species slightly influenced the horizontal dispersal distance. 2)Seed morphological characteristics(weight, length, width and seed wing area) of Pyunnanensis were significantly lower than Kevelyniana’s. 3) The ratio of seed wing length to width of Pyunnanensis was greater, and had less seed wing loading than Kevelyniana, the seed settlement velocity of Pyunnanensis (773cm·s-1) was lower than Kevelyniana’s (1169cm·s-1). Meanwhile, the seed horizontal dispersal distance(075m) under same wind speed was further than Kevelyniana’s (071m). The present study indicated that wind dispersal ability of Pyunnanensis’ seed was stronger. The research results provided more knowledge to understand seed wind dispersal mechanism and seed adaptation strategies in term of evolution and ecology.  相似文献   

19.
A seed predator drives the evolution of a seed dispersal mutualism   总被引:1,自引:0,他引:1  
Although antagonists are hypothesized to impede the evolution of mutualisms, they may simultaneously exert selection favouring the evolution of alternative mutualistic interactions. We found that increases in limber pine (Pinus flexilis) seed defences arising from selection exerted by a pre-dispersal seed predator (red squirrel Tamiasciurus hudsonicus) reduced the efficacy of limber pine's primary seed disperser (Clark's nutcracker Nucifraga columbiana) while enhancing seed dispersal by ground-foraging scatter-hoarding rodents (Peromyscus). Thus, there is a shift from relying on primary seed dispersal by birds in areas without red squirrels, to an increasing reliance on secondary seed dispersal by scatter-hoarding rodents in areas with red squirrels. Seed predators can therefore drive the evolution of seed defences, which in turn favour alternative seed dispersal mutualisms that lead to major changes in the mode of seed dispersal. Given that adaptive evolution in response to antagonists frequently impedes one kind of mutualistic interaction, the evolution of alternative mutualistic interactions may be a common by-product.  相似文献   

20.
We conducted a functional analysis of seed dispersal and its plasticity in response to density in Arabidopsis thaliana by growing morphologically diverse ecotypes under high and low density and measuring seed dispersion patterns under controlled conditions. Maternal plant architectural traits such as height and branching, and fruit traits such as dehiscence and silique length influenced various measures of seed dispersion patterns, including the average dispersal distance, kurtosis of the seed dispersion pattern, and post-dispersal seed density. The density at which plants grew determined which traits influenced dispersal. A change in density would therefore change which maternal characters would be subjected to natural selection through selection on dispersal. Density-mediated maternal effects on dispersal contributed to a negative correlation between parents and offspring for sibling density after dispersal, which could impede the response to selection on post-dispersal sibling density. Plant traits that influenced dispersal also influenced maternal fitness- sometimes opposing selection on dispersal and sometimes augmenting it-and the direction of the relationship sometimes depended on density. These density-dependent relationships between plant traits, dispersal, and maternal fitness can increase or reduce evolutionary constraints on dispersal, depending on the trait and depending on post-dispersal density itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号