首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Standard metabolic rates of S. invicta workers, males, female alates, larvae and pupae were determined using closed-system respirometry. Vdot;(O(2)) (ml h(-1)) of all castes and life stages scaled with temperature and mass. Differences between castes and life stages are discussed in light of their different life histories and the different functions of these stages within the colony. Workers, female alates, male alates, larvae and pupae had mass-specific Vdot;(O(2)) (ml O(2) g wet weight(-1) h(-1), corrected to 25 degrees C) of 0.404+/-0.023, 0.316+/-0.010, 0.674+/-0.024, 0.291+/-0.020, and 0.227+/-0.015 (mean+/-SE), respectively. Measurement of CO(2) and O(2) made possible the examination of temperature and mass effects on respiratory quotient (RQ), as well as accurate transformation of O(2) consumption to metabolic rate (&mgr;W) for comparison with other ant species. Mass-specific metabolic rates of S. invicta females and workers compare favorably with data from 17 other ant species, but metabolic rates of males (177%) and pupae (42%) fall above and below predicted rates, respectively. Several equations relating temperature and mass to Vdot;(O(2)) are presented.  相似文献   

2.
Vitamin E is a major chain-breaking antioxidant which is able to reduce liver oxidative damage without modifying aerobic capacity in T(3)-treated rats. We investigated whether vitamin E has similar effects in hyperthyroid state induced by cold exposure. Cold exposure increased aerobic capacity and O(2) consumption in homogenates and mitochondria and tissue mitochondrial protein content. Vitamin E did not modify aerobic capacity and mitochondrial protein content of cold liver, but increased ADP-stimulated respiration of liver preparations. Succinate-supported H(2)O(2) release rates were increased by cold during basal and stimulated respiration, whereas the pyruvate/malate-supported ones increased only during basal respiration. Vitamin administration to cold-exposed rats decreased H(2)O(2) release rates with both substrates during basal respiration. This effect reduced ROS flow from mitochondria to cytosol, limiting liver oxidative damage. Cold exposure also increased mitochondrial capacity to remove H(2)O(2), which was reduced by vitamin treatment, showing that the antioxidant also lowers H(2)O(2) production rate. The different effects of cold exposure and vitamin treatment on H(2)O(2) generation were also found in the presence of respiration inhibitors. Although this can suggest that the cold and vitamin induce opposite changes in mitochondrial content of autoxidizable electron carriers, it is likely that vitamin effect is due to its capacity to scavenge superoxide radical. Finally, vitamin E reduced mitochondrial oxidative damage and susceptibility to oxidants, and prevented Ca(2+)-induced swelling elicited by cold. In the whole, our results suggest that vitamin E is able to maintain aerobic capacity and attenuate oxidative stress of hepatic tissue in cold-exposed rats modifying mitochondrial population characteristics.  相似文献   

3.
Cold acclimation is initially associated with shivering thermogenesis in skeletal muscle followed by adaptive non-shivering thermogenesis, particularly in brown adipose tissue (BAT). In response, hyperphagia occurs to meet increased metabolic demand and thermoregulation. The present study investigates the effects of cold (4 ± 1 °C) acclimation and hyperphagia on circulating and intestinal levels of gastric inhibitory polypeptide (GIP) in rats. Pair fed animals were used as additional controls in some experiments. Cold acclimation for 42 days significantly (p<0.01) increased daily food intake. There was no corresponding change in body weight. However, body weights of pair fed cold exposed rats were significantly (p<0.01) reduced compared to controls and ad libitum fed cold exposed rats. By day 42, non-fasting plasma glucose was increased (p<0.05) by chronic cold exposure regardless of food intake. Corresponding plasma insulin concentrations were significantly (p<0.01) lower in pair fed cold exposed rats. Circulating GIP levels were elevated (p<0.05) in ad libitum fed cold acclimated rats on days 18 and 24, but returned to normal levels by the end of the study. The glycaemic response to oral glucose was improved (p<0.01) in all cold exposed rats, with significantly (p<0.05) elevated GIP responses in ad libitum fed rats and significantly (p<0.05) reduced insulin responses in pair fed rats. In keeping with this, insulin sensitivity was enhanced (p<0.05) in cold exposed rats compared to controls. By the end of the study, cold acclimated rats had significantly (p<0.01) increased BAT mass and intestinal concentrations of GIP and GLP-1 compared to controls, independent of food intake. These data indicate that changes in the secretion and actions of GIP may be involved in the metabolic adaptations to cold acclimation in rats.  相似文献   

4.
The relationship between cerebral interstitial oxygen tension (Pt(O(2))) and cellular energetics was investigated in mechanically ventilated, anesthetized rats during progressive acute hypoxia to determine whether there is a "critical" brain Pt(O(2)) for maintaining steady-state aerobic metabolism. Cerebral Pt(O(2)), measured by electron paramagnetic resonance oximetry, decreased proportionately to inspired oxygen fraction. (31)P-nuclear magnetic resonance measurements revealed no changes in P(i), phosphocreatine (PCr)/P(i) ratio, or intracellular pH when arterial blood oxygen tension (Pa(O(2))) was reduced from 145.1 +/- 11.7 to 56.5 +/- 4.4 mmHg (means +/- SE). Intracellular acidosis, a sharp rise in P(i), and a decline in the PCr/P(i) ratio developed when Pa(O(2)) was reduced further to 40.7 +/- 2.3 mmHg. The corresponding Pt(O(2)) values were 15.1 +/- 1.8, 8.8 +/- 0.4, and 6.8 +/- 0.3 mmHg. We conclude that over a range of decreasing oxygen tensions, cerebral oxidative metabolism is not sensitive to oxygen concentration. Oxygen becomes a regulatory substrate, however, when Pt(O(2)) is decreased to a critical level.  相似文献   

5.
Postmenopausal women tend to have a higher risk in developing obesity and thus metabolic syndrome. Recently we could demonstrate that physical activity and estrogen replacement are effective strategies to prevent the development of nutritional induced obesity in an animal model. The aim of this study was to determine the combined effects of estrogen treatment and exercise training on already established obesity. Therefore ovariectomized (OVX) and sham-operated (SHAM) female Wistar rats were exposed to a high fat diet for ten months. After this induction period obese SHAM and OVX rats either remained sedentary or performed treadmill training for six weeks. In addition OVX rats were treated with 17β-Estradiol (E(2)) alone, or in combination with training. Before and after intervention effects on lipid and glucose metabolism were investigated. Training resulted in SHAM and OVX rats in a significant decrease of body weight, subcutaneous and visceral body fat, size of adipocytes and the serum levels of leptin, cholesterol, low-density lipoprotein and triglycerides. In OVX animals E(2) treatment resulted in similar effects. Often the combination of E(2) treatment and training was most effective. Analysis of the respiratory quotient indicates that SHAM animals had a better fat burning capacity than OVX rats. There was a tendency that training in SHAM animals and E(2) treatment in OVX animals could improve this capacity. Analysis of glucose metabolism revealed that obese SHAM animals had higher glucose tolerance than OVX animals. Training improved glucose tolerance in SHAM and OVX rats, E(2) treatment in OVX rats. The combination of both was most effective. Our results indicate that even after a short intervention period of six weeks E(2) treatment and exercise training improve parameters related to lipid as well as glucose metabolism and energy expenditure in a model of already established obesity. In conclusion a combination of hormone replacement therapy and exercise training could be a very effective strategy to encourage the therapy of diet-induced obesity and its metabolic consequences in postmenopausal women.  相似文献   

6.
Homeotherms have specific mechanisms to maintain a constant core body temperature despite changes in thermal environment, food supply, and metabolic demand. Brown adipose tissue, the principal thermogenic organ, quickly and efficiently increases heat production by dissipating the mitochondrial proton motive force. It has been suggested that activation of brown fat, via either environmental (i.e. cold exposure) or pharmacologic means, could be used to increase metabolic rate and thus reduce body weight. Here we assess the effects of intermittent cold exposure (4°C for one to eight hours three times a week) on C57BL/6J mice fed a high fat diet. Cold exposure increased metabolic rate approximately two-fold during the challenge and activated brown fat. In response, food intake increased to compensate fully for the increased energy expenditure; thus, the mice showed no reduction in body weight or adiposity. Despite the unchanged adiposity, the cold-treated mice showed transient improvements in glucose homeostasis. Administration of the cannabinoid receptor-1 inverse agonist AM251 caused weight loss and improvements in glucose homeostasis, but showed no further improvements when combined with cold exposure. These data suggest that intermittent cold exposure causes transient, meaningful improvements in glucose homeostasis, but without synergy when combined with AM251. Since energy expenditure is significantly increased during cold exposure, a drug that dissociates food intake from metabolic demand during cold exposure may achieve weight loss and further metabolic improvements.  相似文献   

7.
We examined the degree to which ventilatory sensitivity to rising body temperature (the slope of the regression line relating ventilation and body temperature) is altered by restoration of arterial PCO(2) to the eucapnic level during prolonged exercise in the heat. Thirteen subjects exercised for ~60 min on a cycle ergometer at 50% of peak O(2) uptake with and without inhalation of CO(2)-enriched air. Subjects began breathing CO(2)-enriched air at the point that end-tidal Pco(2) started to decline. Esophageal temperature (T(es)), minute ventilation (V(E)), tidal volume (V(T)), respiratory frequency (f(R)), respiratory gases, middle cerebral artery blood velocity, and arterial blood pressure were recorded continuously. When V(E), V(T), f(R), and ventilatory equivalents for O(2) uptake (V(E)/VO(2)) and CO(2) output (V(E)/VCO(2)) were plotted against changes in T(es) from the start of the CO(2)-enriched air inhalation (ΔT(es)), the slopes of the regression lines relating V(E), V(T), V(E)/VO(2), and V(E)/VCO(2) to ΔT(es) (ventilatory sensitivity to rising body temperature) were significantly greater when subjects breathed CO(2)-enriched air than when they breathed room air (V(E): 19.8 ± 10.3 vs. 8.9 ± 6.7 l·min(-1)·°C(-1), V(T): 18 ± 120 vs. -81 ± 92 ml/°C; V(E)/VO(2): 7.4 ± 5.5 vs. 2.6 ± 2.3 units/°C, and V(E)/VCO(2): 7.6 ± 6.6 vs. 3.4 ± 2.8 units/°C). The increase in Ve was accompanied by increases in V(T) and f(R). These results suggest that restoration of arterial PCO(2) to nearly eucapnic levels increases ventilatory sensitivity to rising body temperature by around threefold.  相似文献   

8.
Little is known about lung function during early stages of postnatal maturation, although the complex structural changes associated with developing rat lung are well studied. We therefore analyzed corresponding functional (lung volume, respiratory mechanics, intrapulmonary gas mixing, and gas exchange) and structural (alveolar surface area, mean linear intercept length, and alveolar septal thickness) changes of the developing rat lung at 7-90 days. Total lung capacity (TLC) increased from 1.54 +/- 0.07 to 16.7 +/- 2.46 (SD) ml in proportion to body weight, but an increase in body weight exceeded an increase in lung volume by almost twofold. Series dead space volume increased from 0.21 +/- 0.03 to 1.38 +/- 0.08 ml but decreased relative to TLC from 14% to 8%, indicating that parenchymal growth exceeded growth of conducting airways. Diffusing capacity of CO (D(CO)) increased from 8.1 +/- 0.8 to 214.1 +/- 23.5 micromol min(-1) hPa(-1), corresponding to a substantial increase in surface area from 744 +/- 20 to 6,536 +/- 488 cm(2). D(CO) per unit of lung volume is considerably lower in the immature lung, inasmuch as D(CO)/TLC in 7-day-old rats was only 42% of that in adult (90 day-old) rats. In humans, however, infants and adults show comparable specific D(CO). Our functional and structural analysis shows that gas exchange is limited in the immature rat lung. The pivotal step for improvement of gas exchange occurs with the transition from bulk alveolarization to the phase of expansion of air spaces with septal reconstruction and microvascular maturation.  相似文献   

9.
Cold acclimation in food-restricted rats   总被引:3,自引:0,他引:3  
Food intake, body weight and brown adipose tissue (BAT) mass and composition of rats exposed at 6 degrees C either with food ad libitum or food-restricted were compared with those of rats in the thermoneutral zone, with food ad libitum. Cold acclimation with food ad libitum increases food intake and prevents body weight gains. IBAT (interscapular BAT) increases its mass and changes its composition after 3 weeks of cold exposure. Cold acclimation with food restriction produces a progressive decrease in body weight. IBAT mass increases after 3 weeks but changes in composition occur sooner. It is concluded that the overfeeding that accompanies cold acclimation is not necessary for non-shivering thermogenesis in BAT.  相似文献   

10.
Ma DK  Ringstad N 《生物学前沿》2012,7(3):246-253
Aerobic metabolism is fundamental for almost all animal life.Cellular consumption of oxygen (O2) and production of carbon dioxide (CO2) signal metabolic states and physiologic stresses.These respirator...  相似文献   

11.
Aged rats exhibit a decreased muscle microvascular O(2) partial pressure (Pmv(O(2))) at rest and during contractions compared with young rats. Age-related reductions in nitric oxide bioavailability due, in part, to elevated reactive O(2) species, constrain muscle blood flow (Qm). Antioxidants may restore nitric oxide bioavailability, Qm, and ameliorate the reduced Pmv(O(2)). We tested the hypothesis that antioxidants would elevate Qm and, therefore, Pmv(O(2)) in aged rats. Spinotrapezius muscle Pmv(O(2)) and Qm were measured, and oxygen consumption (Vm(O(2))) was estimated in anesthetized male Fisher 344 x Brown Norway hybrid rats at rest and during 1-Hz contractions, before and after antioxidant intravenous infusion (76 mg/kg vitamin C and 52 mg/kg tempol). Before infusion, contractions evoked a biphasic Pmv(O(2)) that fell from 30.6 +/- 0.9 Torr to a nadir of 16.8 +/- 1.2 Torr with an "undershoot" of 2.8 +/- 0.7 Torr below the subsequent steady-state (19.7 +/- 1.2 Torr). The principal effect of antioxidants was to elevate baseline Pmv(O(2)) from 30.6 +/- 0.9 to 35.7 +/- 0.8 Torr (P < 0.05) and reduce or abolish the undershoot (P < 0.05). Antioxidants reduced Qm and Vm(O(2)) during contractions (P < 0.05), while decreasing force production 16.5% (P < 0.05) and elevating the force production-to-Vm(O(2)) ratio (0.92 +/- 0.03 to 1.06 +/- 0.6, P < 0.05). Thus antioxidants increased Pmv(O(2)) by altering the balance between muscle O(2) delivery and Vm(O(2)) at rest and during contractions. It is likely that this effect arose from antioxidants reducing myocyte redox below the level optimal for contractile performance and directly (decreased tension) or indirectly (altered balance of vasoactive mediators) influencing O(2) delivery and Vm(O(2)).  相似文献   

12.
? Respiratory acclimation to growth temperature differs between species, but underlying mechanisms are poorly understood. In the present study, we tested the hypothesis that respiratory acclimation of CO(2) release is a consequence of growth regulation such that growth rates of young foliage of Eucalyptus spp. are similar at contrasting growth temperatures. Further, we tested whether such a response is affected by adaptation of Eucalyptus to different thermal environments via growth at different altitudes in the Australian Alps. ? We employed calorimetric methods to relate rates of CO(2) release (mainly from substrate oxidation) and rates of O(2) reduction to conservation of energy. Temperature responses of these processes provided insight into mechanisms that control energy conservation and expenditure, and helped define 'instantaneous enthalpic growth capacity' (CapG). ? CapG increased with altitude, but was counteracted by other factors in species adapted to highland habitats. The acclimation response was partly driven by changes in respiratory capacity (CapR(CO2)), and partly by more pronounced dynamic responses of CO(2) release (δ(R(CO2))) to measurement temperature. We observed enhanced temperature sensitivity of O(2) reduction (E(o)(R(O2))) at higher altitudes. ? Adaptation to growth temperature included differences in respiration and growth capacities, but there was little evidence that Eucalyptus species vary in metabolic flexibility.  相似文献   

13.
In loosely-restrained adult conscious rats exposed to stepwise changes in ambient temperature (T(a)) from 25 to 5 degrees C or from 20 to 35 degrees C, we have recorded body and tail temperatures, metabolic rate (VO(2)), shivering and ventilation (V). It was found that VO(2) and V vary with T(a) and show a nadir for a T(a) of 30 degrees C whereas shivering starts at 20 degrees C and increases progressively with cold exposure. T(tail) follows changes in T(a) whereas T(body) decreases slightly in cold and increases markedly in warm exposure. These results suggest that the control of T(body) interacts with the control of breathing in order to increase VO(2) during cold exposure and to facilitate evaporative respiratory heat dissipation during warm exposure.  相似文献   

14.
The accuracy of a computerized metabolic system, using inspiratory and expiratory methods of measuring ventilation, was assessed in eight male subjects. Gas exchange was measured at rest and during five stages on a cycle ergometer. Pneumotachometers were placed on the inspired and expired side to measure inspired (VI) and expired ventilation (VE). The devices were connected to two systems sampling expired O(2) and CO(2) from a single mixing chamber. Simultaneously, the criterion (Douglas bag, or DB) method assessed VE and fractions of O(2) and CO(2) in expired gas (FE(O(2)) and FE(CO(2))) for subsequent calculation of O(2) uptake (VO(2)), CO(2) production (VCO(2)), and respiratory exchange ratio. Both systems accurately measured metabolic variables over a wide range of intensities. Though differences were found between the DB and computerized systems for FE(O(2)) (both inspired and expired systems), FE(CO(2)) (expired system only), and VO(2) (inspired system only), the differences were extremely small (FE(O(2)) = 0.0004, FE(CO(2)) = -0.0003, VO(2) = -0.018 l/min). Thus a computerized system, using inspiratory or expiratory configurations, permits extremely precise measurements to be made in a less time-consuming manner than the DB technique.  相似文献   

15.
We aimed to assess the influence of lateral decubitus postures and positive end-expiratory pressure (PEEP) on the regional distribution of ventilation and perfusion. We measured regional ventilation (VA) and regional blood flow (Q) in six anesthetized, mechanically ventilated dogs in the left (LLD) and right lateral decubitus (RLD) postures with and without 10 cmH(2)O PEEP. Q was measured by use of intravenously injected 15-microm fluorescent microspheres, and VA was measured by aerosolized 1-microm fluorescent microspheres. Fluorescence was analyzed in lung pieces approximately 1.7 cm(3) in volume. Multiple linear regression analysis was used to evaluate three-dimensional spatial gradients of Q, VA, the ratio VA/Q, and regional PO(2) (Pr(O(2))) in both lungs. In the LLD posture, a gravity-dependent vertical gradient in Q was observed in both lungs in conjunction with a reduced blood flow and Pr(O(2)) to the dependent left lung. Change from the LLD to the RLD or 10 cmH(2)O PEEP increased local VA/Q and Pr(O(2)) in the left lung and minimized any role of hypoxia. The greatest reduction in individual lung volume occurred to the left lung in the LLD posture. We conclude that lung distortion caused by the weight of the heart and abdomen is greater in the LLD posture and influences both Q and VA, and ultimately gas exchange. In this respect, the smaller left lung was the most susceptible to impaired gas exchange in the LLD posture.  相似文献   

16.
大绒鼠冷驯化和脱冷驯化能量代谢特征的变化   总被引:1,自引:1,他引:0  
通过测定冷驯化(5℃)到脱冷驯化(30℃)条件下,大绒鼠(Eothenomys miletus)的体重、摄入能、静止代谢率(RMR)、非颤抖性产热(NST)和血清瘦素含量等参数,探讨了血清瘦素浓度与能量收支的关系。结果表明,冷驯化可致大绒鼠体重下降,RMR、NST、摄入能升高,血清瘦素浓度降低;脱冷驯化后大绒鼠体重增加,RMR、NST、摄入能降低,血清瘦素浓度增加。血清瘦素含量与体重呈正相关,与RMR、NST、摄入能呈负相关。表明大绒鼠的体重、摄入能和产热能力具有较强的可塑性,且瘦素可能参与了大绒鼠适应冷驯化及恢复过程中的能量平衡和体重的调节。  相似文献   

17.
The induction of phosphatidylcholine (PC) biosynthesis via the CDPcholine pathway in lung and liver of rats has been shown following the intratracheal administration of 1,1,1-trichloro-2m2-bis(p-chlorophenyl) ethane (DDT) (5 mg/100 g body weight) and endosulfan (1 mg/100 g body weight) for 3 days. Controls received only the vehicle solution (groundnut oil, 0.1 m1/100 g body weight). The treatment of DDT and endosulfan significantly increased the PC contents and the incorporation of radioactive [methyl-3H]choline into PC of lung and liver microsomes. The incorporation of radioactive [methyl-14C]methionine into microsomal PC of lung and liver was not affected significantly by treatment with either of the insecticides. 1,4,5,6,7-hexachloro-5-norbornene-2,3-dimethano cyclic sulfite (endosulfan) administration significantly increased the activity of choline kinase and phosphocholine cytidylyltransferase (both cytosolic and microsomal) of lung, whereas DDT increased the activity of only latter. In liver, both DDT and endosulfan administration significantly increased the activity of choline kinase and phosphocholine cytidylyltransferase (both cytosolic and microsomal). However, the activity of phosphocholinetransferase was not affected in both lung and liver microsomes of rats treated with these insecticides. The PC precursor pool sizes, choline and phosphorylcholine, of lung and liver tissues were not altered by DDT and endosulfan treatments. The present results suggest that the increased level of PC and incorporation of radioactive [methyl-3H]choline into microsomal PC could be the result of increased activity of choline kinase and phosphocholine cytidylyltransferase of lung and liver of rats following intratracheal administration of DDT and endosulfan.  相似文献   

18.
We questioned whether the amplitudes of the circadian pattern of body temperature (T(b)), oxygen consumption (V (O(2))) and heart rate (HR) changed systematically among species of different body weight (W). Because bodies of large mass have a greater heat capacitance than those of smaller mass, if the relative amplitude (i.e., amplitude/mean value) of metabolic rate was constant, one would expect the T(b) oscillation to decrease with the increase in the species W. We compiled data of T(b), V (O(2)) and HR from a literature survey of over 200 studies that investigated the circadian pattern of these parameters. Monotremata, Marsupials and Chiroptera, were excluded because of their characteristically low metabolic rate and T(b). The peak-trough ratios of V (O(2)) (42 species) and HR (35 species) averaged, respectively, 1.57+/-0.08, and 1.35+/-0.07, and were independent of W. The daily high values of T(b) did not change, while the daily low T(b) values slightly increased, with the species W; hence, the high-low T(b) difference (57 species) decreased with W (3.3 degrees C.W(-0.13)). However, the decrease in T(b) amplitude with W was much less than expected from physical principles, and the high-low T(b) ratio remained significantly above unity even in the largest mammals. Thus, it appears that in mammals, despite the huge differences in physical characteristics, the amplitude of the circadian pattern is a fixed (for V (O(2)) and HR), or almost fixed (for T(b)), fraction of the 24-h mean value. Presumably, the amplitudes of the oscillations are controlled parameters of physiological significance.  相似文献   

19.
Effects of NO-synthase inhibitor N(omega)-nitro-L-arginine (LNA) and donor sodium nitroprusside (SNP) on alteration in body temperature, plasma corticosterone level and hypothalamic monoamines in response to cold exposure, were studied. Drop of the body temperature in cold exposure in rats treated with LNA or SNP was the same as in the control group. Administration of SNP (2 mg/kg i.p.) significantly increased the basal level of corticosterone (CS). Cold exposure elevated CS in all groups of rats. LNA did not markedly alter the hypothalamic noradrenaline (NA) while SNP significantly decreased the NA. Cold exposure resulted in additional decrease of the NA in SNP-treated rats. NA was found to significantly increase within 48 hrs following the cold exposure in the LNA as well as in the SNP groups. SNP significantly increased basal dopamine and DOPAC levels. Cold exposure did not affect hypothalamic dopamine. In the experiments, NO changes of serotonin and 5-hydroxyindoleacetic acid were observed. The findings suggest that antagonistic effects of the NO-synthase inhibitor and NO donor postulated in literature for various kinds of stress do not occur in experiments with cold stress.  相似文献   

20.
In this study, we applied time- and frequency-domain signal processing techniques to the analysis of respiratory and arterial O(2) saturation (Sa(O(2))) oscillations during nonapneic periodic breathing (PB) in 37 supine awake chronic heart failure patients. O(2) was administered to eight of them at 3 l/min. Instantaneous tidal volume and instantaneous minute ventilation (IMV) signals were obtained from the lung volume signal. The main objectives were to verify 1) whether the timing relationship between IMV and Sa(O(2)) was consistent with modeling predictions derived from the instability hypothesis of PB and 2) whether O(2) administration, by decreasing loop gain and increasing O(2) stores, would have increased system stability reducing or abolishing the ventilatory oscillation. PB was centered around 0.021 Hz, whereas respiratory rate was centered around 0.33 Hz and was almost stable between hyperventilation and hypopnea. The average phase shift between IMV and Sa(O(2)) at the PB frequency was 205 degrees (95% confidence interval 198-212 degrees). In 12 of 37 patients in whom we measured the pure circulatory delay, the predicted lung-to-ear delay was 28.8 +/- 5.2 s and the corresponding observed delay was 30.9 +/- 8.8 s (P = 0.13). In seven of eight patients, O(2) administration abolished PB (in the eighth patient, Sa(O(2)) did not increase). These results show a remarkable consistency between theoretical expectations derived from the instability hypothesis and experimental observations and clearly indicate that a condition of loss of stability in the chemical feedback control of ventilation might play a determinant role in the genesis of PB in awake chronic heart failure patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号