首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quiescent gonocytes were isolated from fetal testes of rat 18-day post coitum and cultured alone or on monolayers of somatic cells from different origins. The gonocytes specifically adhered to Sertoli cells, isolated from 21 to 23-day-old rat testes; this adherence was necessary for their survival in vitro. Addition of follicle-stimulating hormone and testosterone to these cultures did not increase the viability of the gonocytes. Serum was found to be deleterious to the germ cells. Electron-microscopic examination of Sertoli-cell-gonocyte co-cultures revealed the presence of numerous adhesion plaques between these cells, indicating that Sertoli cells and gonocytes are able to communicate in vitro. Gonocytes, in co-culture with Sertoli cells, were viable for at least 9 days. The gonocytes did not spontaneously resume proliferation. The simple culture system described in the present paper should be useful in studying the nature of the factors that are responsible for sending the quiescent gonocytes into the cell cylce and for stimulating the formation of A spermatogonia, a process characterizing the start of spermatogenesis.  相似文献   

2.
The gross morphology, histology, and ultrastructure of Liolaemus gravenhorsti gonads prior to and after differntiation are described. Special emphasis has been given to characterization and changes of the germ cell line throughout intrauterine development and 3 days postpartum. During the pregonadal stage, the primordial germ cell migrates toward gonadal rudiments by way of the mesenchyme. These cells can easily be identified by their great size, voluminous and lobulated nucleus, great quantities of yolk platelets, microtubules, and numerous lipid inclusions. In the undifferentiated gonad, the germ cells (type 1 gonocytes) have an ovoid or spherical shape and autodigestion of yolk platelets, great development of Golgi complex, and mitochondrial aggregation, though fewer liposomes, pseudopodes, and microtubules were noted. Concomitantly with the beginning of mitosis, a third type of germ cell appears, the type 2 gonocytes, which are smaller, with poorly defined membranous systems in various degrees of involution. The seminiferous cords are organized when somatic cells of the medullar portion of the gonad surround type 1 gonocytes. Germinal cells are centrally localized in the cords. Near birth many gonocytes migrate toward the basal lamina of cords and differentiate into spherical prespermatogonia, with few organoids. Sertoli cells eparate them from the basal lamina. In advanced pregnancy, Leyding cells become numerous with morphology typical of androgen-producing cells.  相似文献   

3.
We investigated the effect of retinoids on the development of Sertoli, germ, and Leydig cells using 3-day culture of testes from fetuses 14.5 and 18.5 days post-conception (dpc) and from neonates 3 days postpartum (dpp). Addition of 10(-6) M and 3.10(-8) M retinoic acid (RA) caused a dose-dependent disruption of the seminiferous cords in 14.5-day-old fetal testes, without any change in the 5-bromo-2'-deoxyuridine (BrdU) labeling index of the Sertoli cells. RA caused no disorganization of older testes, but it did cause hyperplasia of the Sertoli cells in 3-dpp testes. Fragmentation of the Sertoli cell DNA was not detected in control or RA-treated testes at any age studied. The cAMP produced in response to FSH was significantly decreased in RA-treated testes for all studied ages. Both 10(-6) M and 3.10(-8) M RA dramatically reduced the number of gonocytes per 14.5-dpc testis. This resulted from a high increase in apoptosis, which greatly exceeded the slight increase of mitosis. RA caused no change in the number of gonocytes in testes explanted on 18.5 dpc (the quiescent period), whereas it increased this number in testes explanted on 3 dpp (i.e., when gonocyte mitosis and apoptosis resume). Lastly, RA and retinol (RE) reduced both basal and acute LH-stimulated testosterone secretion by 14.5-dpc testis explants, without change in the number of 3beta-hydroxysteroid dehydrogenase-positive cells per testis. Retinoids had no effect on basal or LH-stimulated testosterone production by older testes. In conclusion, RE and RA are potential regulators of the development of the testis and act mainly negatively during fetal life and positively during the neonatal period on the parameters we have studied.  相似文献   

4.
Hormonal regulation of spermatogenesis and spermiogenesis   总被引:1,自引:0,他引:1  
Normal testicular function is dependent upon hormones acting through endocrine and paracrine pathways both in vivo and in vitro. Sertoli cells provide factors necessary for the successful progression of spermatogonia into spermatozoa. Sertoli cells have receptors for follicle stimulating hormone (FSH) and testosterone which are the main hormonal regulators of spermatogenesis. Hormones such as testosterone, FSH and luteinizing hormone (LH) are known to influence the germ cell fate. Their removal induces germ cell apoptosis. Proteins of the Bcl-2 family provide one signaling pathway which appears to be essential for male germ cell homeostasis. In addition to paracrine signals, germ cells also depend upon signals derived from Sertoli by direct membrane contact. Somatostatin is a regulatory peptide playing a role in the regulation of the proliferation of the male gametes. Activin A, follistatin and FSH play a role in germ cell maturation during the period when gonocytes resume mitosis to form the spermatogonial stem cells and differentiating germ cell populations. In vitro cultures systems have provided evidence that spermatogonia in advance stage of differentiation have specific regulatory mechanisms that control their fate. This review article provides an overview of the literature concerning the hormonal pathways regulating spermatogenesis.  相似文献   

5.
The hypogonadic rat is characterized by male sterility, reduced female fertility, and renal hypoplasia controlled by a single recessive allele (hgn) on chromosome 10. Plasma testosterone is low and levels of gonadotropins are high in adult male hgn/hgn rats, indicating that the cause of hypogonadism lies within the testis itself. We found that the postnatal growth of the seminiferous tubules was severely affected. Here we describe the details of postnatal testicular pathogenesis of the hgn/ hgn rats. In these rats, gonadal sex determination and initial differentiation of each type of testicular cell occur, but proliferation, differentiation, and maturation of these cells during postnatal testicular development is severely affected. Postnatal pathological changes include reduced proliferation and apoptotic cell death of Sertoli cells, abnormal mitosis and cell death of gonocytes, reduced deposition of extracellular matrix proteins into the basal lamina, lack of the formation of an outer basal lamina, formation of multiple layers of undifferentiated peritubular cells, and the delayed appearance and islet conformation of adult-type Leydig cells. Apoptotic cell death of Sertoli cells and disappearance of FSH receptor mRNA expression indicate that this mutant rat is a useful model for Sertoli cell dysfunction. The abnormalities listed above might be caused by defective interactions between Sertoli cells and other types of testicular cells. Because the results presented here strongly indicate that a normal allele for hgn encodes a factor playing a critical role in testicular development, the determination of the gene responsible for hgn and the analysis of early alterations of gene expression caused by mutations in this gene would provide important information on the mechanisms of testicular development.  相似文献   

6.
Li H  Kim KH 《Biology of reproduction》2003,69(6):1964-1972
Di-(2-ethylhexyl) phthalate (DEHP) and its active metabolite, mono-(2-ethylhexyl) phthalate (MEHP), have been shown to cause reproductive toxicity in both developing and adult animals. In this study, we used organ cultures of fetal and neonatal rat testes to assess the in vitro effect of MEHP on seminiferous cord formation in Embryonic Day 13 (E13) testes and on the development of E18 and Postnatal Day 3 (P3) testes. Interestingly, MEHP had no effect on cord formation in the organ cultures of E13 testes, indicating that it has no effect on sexual differentiation of the indifferent gonad to testis. Consistently, the expression of a Sertoli cell-specific protein, mullerian inhibiting substance (MIS), or the number of gonocytes did not change in E13 testes after MEHP treatment. In contrast, MEHP decreased the levels of MIS and GATA-4 proteins in Sertoli cells and impaired Sertoli cell proliferation in the organ cultures of E18 and P3 testes. These results suggest that MEHP negatively influences proliferation and differentiation of Sertoli cells in both fetal and neonatal testes. In addition, MEHP treatment did not alter the number of gonocytes in E18 testes, whereas the number of gonocytes in P3 testes decreased in a dose-dependent manner, apparently due to enhanced apoptosis. These results suggest that MEHP adversely affects the gonocytes, which are mitotically active and undergoing migration and differentiation in neonatal testes, but it has no effect on fetal gonocytes that are mitotically quiescent.  相似文献   

7.
Ultrastructure of germ cell development in the human fetal testis   总被引:8,自引:0,他引:8  
Summary Electron-microscopic examination of the human fetal testis between 10 and 20 weeks gestation reveals the presence of two distinct cell types within the tubules: Sertoli cells and germ cells. The latter are distinguished by their spherical shape, smooth nuclear membranes, globular mitochondria and paucity of cytoplasmic organelles. The gonocytes, or primitive germ cells, occur as single cells in the central portions of the tubules. Their chromatin is finely granular and evenly dispersed. Nucleoli are centrally placed and of uniform electron density. Various stages in the migration of gonocytes to the tubular periphery are indicated by the extension of cytoplasmic processes toward the basal lamina. Bands of microtubules are present within the processes. Spermatogonia are arranged in pairs and groups at the tubular periphery. They lack the nucleolar and mitochondrial characteristics of adult spermatogonia. Except for slight changes in chromatin density and nucleolar structure, the fetal spermatogonia retain the ultrastructural characteristics of gonocytes. Intercellular bridges connect adjacent spermatogonia. Degeneration affecting large numbers of germ cells, but primarily gonocytes, begins with nuclear infolding and chromatin condensation and eventually involves both nuclear and cytoplasmic structures. The degenerated cells are removed by phagocytosis by adjacent Sertoli cells. Large phagosomes are present in the cytoplasm of many of the Sertoli cells.Supported by a grant from the Ford Foundation and by General Research Support Grant RR055511 from the National Institutes of Health. Technical assistance was provided by Mrs. Lucy A. Conner.  相似文献   

8.
Gonocytes (or prospermatogonia) are the precursors to spermatogonial stem cells (SSCs), which provide the foundation for spermatogenesis through their ability to both self-renew and generate daughter cells. Despite their relative importance, the regulatory mechanisms that govern gonocyte maintenance and transition to SSCs are poorly understood. Recently, we reported that constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence—the first suggestion of the potential role of this signaling pathway in the testis.

This Extra View will review what is known about NOTCH signaling, particularly in Sertoli cells and germ cells in the testes, by providing a background on germ cell biology and a summary of our recently published data on NOTCH1 signaling in Sertoli cells. We also describe additional data showing that aberrant proliferation and differentiation of gonocytes in response to constitutive activation of NOTCH1 signaling in Sertoli cells involves de novo expression of cell cycle proteins and a marked upregulation of the KIT receptor. These data further suggest that NOTCH signaling orchestrates a dynamic balance between maintenance and differentiation of gonocytes in the perinatal testis.  相似文献   

9.
In the testis of the neonatal rat, maturation of germ cells, or gonocytes, lays the foundations for spermatogenesis which will begin later in postnatal development. One of the most critical and yet least understood of the events that occur during the immediate neonatal period is relocation of gonocytes from the more central part of the seminiferous cord, where they are surrounded by Sertoli cells, to its periphery, where they contact the basement membrane. For the current study, we examined this change in gonocyte position by identifying some of the cellular mechanism involved, with the aim of determining whether movement of gonocytes to the basement membrane in vivo and development of cellular processes by these cells in vitro represents a resumption of migratory activity similar to that displayed by their fetal ancestors and by other motile cells. First, we used either thiamine pyrophosphatase cytochemistry or the fluorescent probe nitrobenzoxadiazole ceramide to visualize the Golgi complex in gonocytes and found that (1) this organelle matures and apparently enlarges in vivo with a time course paralleling movement of gonocytes to the basement membrane and undergoes similar changes in vitro that correlate with gonocyte process formation, and (2) the Golgi complex is located in perinuclear cytoplasm facing the apparent direction of gonocyte movement in vivo and in cytoplasm near the cellular process in the great majority of elongated gonocytes in coculture. Next we used two drugs, brefeldin A and monensin, which have in common their ability to disrupt the Golgi complex, and found that both drugs prevent process formation by gonocytes in a manner that is completely reversible. We also tested the involvement of the cytoskeleton in gonocyte elongation by utilizing nocodazole to disrupt and taxol to stabilize microtubules, as verified by alpha-tubulin immunofluorescence. Inclusion of the drug abolished (taxol) or substantially diminished (nocodazole) the ability of gonocytes to elongate in a reversible manner. We also found that the Golgi complex was intact in the presence of taxol and that microtubules were intact in the presence of both Golgi complex-specific drugs. Thus, our findings indicate that (1) both the Golgi complex and microtubules are involved in development of processes by gonocytes and (2) neither structure is sufficient by itself to allow these cells to elongate. Taken together, our data provide new evidence suggesting that the cellular mechanism utilized by postnatal gonocytes in relocating to the basement membrane are those mediating active migration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The regulation of early fetal germ cell growth has not been studied in cell culture, probably due to the poor survival of these cells. However, cell culture is the only system in which the control of cell growth can be studied independently of the influence of secreted testicular factors, which are diluted in the medium. We successfully cultured dispersed testicular cells from 16.5-day-old rat fetuses in defined medium and compared the growth of these cells with that of cells from 3-day-old neonates. In this system, fetal gonocytes displayed low levels of mitotic activity and their numbers remained stable. In contrast, neonatal gonocytes displayed high levels of mitotic activity and increased in number, these characteristics resembling those observed in vivo. We found that retinoic acid had deleterious effects on the number of gonocytes but did not affect Sertoli cell proliferation in fetal and neonatal cell cultures. Moreover, in fetal cell cultures, the decrease in the number of gonocytes resulted from a decrease in mitotic activity, probably due to a direct effect of retinoids on fetal gonocytes. Among the selective agonists for the retinoic acid receptor (RARalpha agonist, RARbeta agonist, and RARgamma agonist) and the retinoic X receptor (pan-RXR agonist) tested, only the RARalpha agonist reproduced the effects of retinoic acid at concentrations lower than its Kd value in both fetal and neonatal cell cultures. As both RARalpha and RXRalpha are present in fetal and neonatal gonocytes, we suggest that retinoic acid exerts its effects on gonocytes via a RARalpha-RXRalpha heterodimer, with RARalpha functioning as an active partner and RXRalpha as a passive partner. In this culture system, we show for the first time that triiodothyronine (T3) inhibits testicular fetal Sertoli cell and germ cell growth. We also tested intracellular signaling factors and found that a cAMP analog increased Sertoli cell proliferation and germ cell survival in both fetal and neonatal cells whereas phorbol esters (PMA) strongly inhibited the proliferation of fetal but not of neonatal gonocytes. None of the tested factors (T3, dbcAMP, and PMA) seemed to interact with the all-trans retinoic acid pathway. Thus, fetal gonocytes and neonatal gonocytes differ in intrinsic properties, and their growth is not regulated in the same manner. Despite their low level of mitotic activity, fetal gonocytes were more sensitive to various factors than neonatal gonocytes.  相似文献   

11.
The Sertoli cell in vivo and in vitro   总被引:2,自引:0,他引:2  
The Sertoli cell extends from the basement membrane of the seminiferous tubule towards its lumen; it sends cytoplasmic processes which envelop different generations of germ cells. The use of Sertoli cell culture began to develop in 1975. To reduce germ cell contamination immature animals are generally used as Sertoli cell donors. Sertoli cell mitosis essentially occurs in sexually immature testes in mammals; mitosis of these cells is observed in vitro during a limited period of time. Sertoli cells in vivo perform an impressive range of functions: structural support of the seminiferous epithelium, displacement of germ cells and release of sperm; formation of the Sertoli cell blood-testis barrier; secretion of factors and nutrition of germ cells; phagocytosis of degenerating germ cells and of germ cell materials. Some of the Sertoli cell functions can be studied in vitro. The recent development of Sertoli cell culture on permeable supports (with or without extracellular matrix) has resulted in progress in understanding the vectorial secretion of several Sertoli cell markers. In addition to FSH and testosterone, several other humoral factors are known to influence Sertoli cell function. Furthermore, myoid cells bordering the tubules as well as germ cells are capable of regulating Sertoli cell activity. Sertoli cells are the most widely used testicular cells for in vitro toxicology. The testis is highly vulnerable to xenobiotics and radiations, yet the number of studies undertaken in this field is insufficient and should be drastically increased.  相似文献   

12.
Summary The synthesis of one of the main glycoproteins of the basement membrane, the laminin, was demonstrated by ultrastructural immunolocalization during rat foetal (16th day to 20th day of gestation) and postnatal development of the testis. The lamina densa, part of seminiferous tubular basement membrane, is labeled uniformly at all studied stages. The lamina lucida is not well defined before the postnatal stages, at which times discrete immunostaining extends from the lamina densa to the adjacent seminiferous epithelial cells (spermatogonia and Sertoli cells). The extracellular matrix around the peritubular cells is not labeled before birth. Intracellular immunostaining was detected as early as the 16th day of gestation in both Sertoli cells and cells around the seminiferous tubules which will transform later into peritubular cells. It was located in rough endoplasmic reticulum (RER) cisternae and secretory vesicles. After 18–20 days of postnatal life, the immunostaining faints progressively. Some positive material is seen in the RER of the gonocytes at all studied stages.Sertoli cells and peritubular cells are the main producing cells of laminin after the 16th of gestation. The laminin secreted by gonocytes may play an important role in adhesion of gonocytes to the lamina densa and adjacent Sertoli cells before their transition from basal compartment to adluminal compartment.  相似文献   

13.
The synthesis of one of the main glycoproteins of the basement membrane, the laminin, was demonstrated by ultrastructural immunolocalization during rat foetal (16th day to 20th day of gestation) and postnatal development of the testis. The lamina densa, part of seminiferous tubular basement membrane, is labeled uniformly at all studied stages. The lamina lucida is not well defined before the postnatal stages, at which times discrete immunostaining extends from the lamina densa to the adjacent seminiferous epithelial cells (spermatogonia and Sertoli cells). The extracellular matrix around the peritubular cells is not labeled before birth. Intracellular immunostaining was detected as early as the 16th day of gestation in both Sertoli cells and cells around the seminiferous tubules which will transform later into peritubular cells. It was located in rough endoplasmic reticulum (RER) cisternae and secretory vesicles. After 18-20 days of postnatal life, the immunostaining faints progressively. Some positive material is seen in the RER of the gonocytes at all studied stages. Sertoli cells and peritubular cells are the main producing cells of laminin after the 16th of gestation. The laminin secreted by gonocytes may play an important role in adhesion of gonocytes to the lamina densa and adjacent Sertoli cells before their transition from basal compartment to adluminal compartment.  相似文献   

14.
Vitamin A (also called retinol) and its derivatives, retinoic acids (RAs), are required for postnatal testicular function. Abnormal spermatogenesis is observed in rodents on vitamin A-deficient diets and in retinoic acid receptor alpha (RARalpha) knockout mice. In contrast, RA has an inhibitory effect on the XY gonad development in embryos. To characterize this inhibitory effect of RA, we investigated the cellular events that are required for the XY gonad development, including cell migration from the adjacent mesonephros into the gonad, fetal Sertoli cell differentiation, and survival of gonocytes. In organ cultures of Embryonic Day 13 (E13) XY gonads from rats, all-trans-retinoic acid (tRA) inhibited mesonephric cell migration into the gonad. Moreover, treatment with tRA decreased the expression of Müllerian-inhibiting substance in Sertoli cells and dramatically reduced the number of gonocytes. Increased apoptosis was detected in the XY gonads cultured with tRA, suggesting that the loss of gonocytes could be due to increased apoptosis. In addition, Am580, a synthetic compound that exhibits RARalpha-specific agonistic properties, mimicked the inhibitory effects of tRA on the XY gonad development including mesonephric cell migration and gonocyte survival. Conversely, a RARalpha-selective antagonist, Ro 41-5253, suppressed the inhibitory ability of tRA on the XY gonad development. These results suggest that retinoic acid acting through RARalpha negatively affects fetal Sertoli cell differentiation and gonocyte survival and blocks the migration of mesonephric cells, thereby leading to inhibition of the XY gonad development.  相似文献   

15.
Di(n-butyl) phthalate (DBP) is commonly used in personal care products and as a plasticizer to soften consumer plastic products. Male rats exposed to DBP in utero have malformations of the male reproductive tract and testicular atrophy characterized by degeneration of seminiferous epithelium and decreased sperm production. In the fetal testis, in utero exposure to DBP reportedly resulted in reduced testosterone levels, Leydig cell aggregates, and multinucleated gonocytes (MNG). We investigated whether exposure in utero to DBP affects rat fetal Sertoli cells and compromises interactions between Sertoli and germ cells in the developing testis. Histological examination showed that MNG occurred at low frequency in the normal fetal rat testis. Exposure in utero at the dose level of DBP above estimated environmental or occupational human exposure levels significantly increased the number of these abnormal germ cells. Postnatally, MNG exhibited aberrant mitoses and were detected at the basal lamina. MNG were not apoptotic in the fetal and postnatal rat testes, as indicated by TUNEL. Sertoli cells in DBP-exposed fetal testis had retracted apical processes, altered organization of the vimentin cytoskeleton, and abnormal cell-cell contacts with gonocytes. The effect of DBP on Sertoli cell morphology at the level of light microscopy was reversed after birth and cessation of exposure. Our data indicate that fetal Sertoli cells are targeted by exposure in utero to DBP and suggest that abnormal interactions between Sertoli and germ cells during fetal life play a role in the development of MNG.  相似文献   

16.
Testes from adult and prepubertal mice lacking the Desert hedgehog (DHH:) gene were examined in order to describe further the role of Dhh in spermatogenesis because, in a previous report, DHH:-null male mice were shown to be sterile. Dhh is a signaling molecule expressed by Sertoli cells. Its receptor, patched (Ptc), has been previously localized to Leydig cells and is herein described as being localized also to peritubular cells. Two phenotypes of the mice were observed: masculinized (7.5% of DHH:-null males) and feminized (92.5%), both of which displayed abnormal peritubular tissue and severely restricted spermatogenesis. Testes from adult feminized animals lacked adult-type Leydig cells and displayed numerous undifferentiated fibroblastic cells in the interstitium that produced abundant collagen. The basal lamina, normally present between the myoid cells and Sertoli cells, was focally absent. We speculate that the abnormal basal lamina contributed to other characteristics, such as extracordal gonocytes, apolar Sertoli cells, and anastomotic seminiferous tubules. The two DHH:-null phenotypes described have common peritubular cell defects that may be indicative of the essential role of peritubular cells in development of tubular morphology, the differentiation of Leydig cells, and the ultimate support of spermatogenesis.  相似文献   

17.
The stem cell properties of gonocytes and prospermatogonia at prepubertal stages are still largely unknown: it is not clear whether gonocytes and prospermatogonia are a special cell type or similar to adult undifferentiated spermatogonia. To characterize these cells, we have established transgenic mice carrying EGFP (enhanced green fluorescence protein) cDNA under control of an Oct4 18-kb genomic fragment containing the minimal promoter and proximal and distal enhancers; Oct4 is reported to be expressed in undifferentiated spermatogonia at prepubertal stages. Generation of transgenic mice enabled us to purify gonocytes and prospermatogonia from the somatic cells of the testis. Transplantation studies of testicular cells so far have been done with a mixture of germ cells and somatic cells. This is the first report that establishes how to purify germ cells from total testicular cells, enabling evaluation of cell-autonomous repopulating activity of a subpopulation of prospermatogonia. We show that prospermatogonia differ markedly from adult spermatogonia in both the size of the KIT-negative population and cell cycle characteristics. The GFP(+) KIT(-) fraction of prospermatogonia has much higher repopulating activity than does the GFP(+)KIT(+) population in the adult environment. Interestingly, the GFP(+)KIT(+) population still exhibits repopulating activity, unlike adult KIT-positive spermatogonia. We also show that ALCAM, activated leukocyte cell adhesion molecule, is expressed transiently in gonocytes. Sertoli cells and myoid cells also express ALCAM at the same stage, suggesting that ALCAM may contribute to gonocyte-Sertoli cell adhesion and migration of gonoyctes toward the basement membrane.  相似文献   

18.
We have demonstrated a role for activin A, follistatin, and FSH in male germ cell differentiation at the time when spermatogonial stem cells and committed spermatogonia first appear in the developing testis. Testis fragments from 3-day-old rats were cultured for 1 or 3 days with various combinations of these factors, incubated with bromodeoxyuridine (BrdU) to label proliferating cells, and then processed for stereological analysis and detection of BrdU incorporation. Gonocyte numbers were significantly elevated in cultures treated with activin, while the combination of FSH and the activin antagonist, follistatin, increased the proportion of spermatogonia in the germ cell population after 3 days. All fragment groups treated with FSH contained a significantly higher proportion of proliferating Sertoli cells, while activin and follistatin each reduced Sertoli cell division. In situ hybridization and immunohistochemistry on normal rat testes demonstrated that gonocytes, but not spermatogonia, contain the activin beta(A) subunit mRNA and protein. In contrast, gonocytes first expressed follistatin mRNA and protein at 3 days after birth, concordant with the transition of gonocytes to spermatogonia. Collectively, these data demonstrate that germ cells have the potential to regulate their own maturation through production of endogenous activin A and follistatin. Sertoli cells were observed to produce the activin/inhibin beta(A) subunit, the inhibin alpha subunit, and follistatin, demonstrating that these cells have the potential to regulate germ cell maturation as well as their own development. These findings indicate that local regulation of activin bioactivity may underpin the coordinated development of germ cells and somatic cells at the onset of spermatogenesis.  相似文献   

19.
Addition of dibutyryl cyclic AMP (dbcAMP), methylisobutylxanthine (MIX), or cytochalasin D to co-cultures of Sertoli cells and testicular peritubular myoid cells blocks a series of morphogenetic changes which otherwise occur during culture. When Sertoli cells are plated directly onto preexisting layers of peritubular cells maintained under basal conditions, structures form which display many of the characteristics of germ cell-depleted seminiferous tubules. The presence of dbcAMP, MIX, or cytochalasin D, added at varying times after plating Sertoli cells, results in the inhibition of each successive stage of in vitro remodeling: the inhibition of migration of Sertoli cells, the inhibition of initial ridge formation, the blockage of subsequent formation of mounds and nodules of compacted Sertoli cell aggregates, the prevention of the formation of basal lamina and associated layers of extracellular matrix between Sertoli cell aggregates and surrounding peritubular cells, and the inhibition of tubule formation. The presence of dbcAMP also inhibits the migration of peritubular cells, contractions by these cells, and compaction of Sertoli cell aggregates. When intimate cell apposition is prevented by plating the two cell types on either side of a membrane filter, the morphogenetic cascade is blocked, and no formation of a germ cell-depleted seminiferous tubule-like structure occurs. Other effects of dbcAMP on cell shape, cell movement, and cell association patterns during co-culture are described. Possible mechanisms by which dbcAMP, MIX, or cytochalasin D blocks restructuring are discussed. Since each elicits perturbations of the cytoskeleton, we offer the interpretation that cytoskeletal changes may be correlated with the prevention of closely apposing cell compact and the inhibition of basement membrane formation. Interactions observed between Sertoli cells and peritubular cells during co-culture are postulated to be analogous to those occurring in other types of mesenchymal cell-epithelial cell interactions during organogenesis and during tubulogenesis in the fetal testis. Speculatively, the blockage by dbcAMP of the morphogenetic cascade in the co-cultured system may be related to the inhibition by dbcAMP of testis cord formation in organ cultures of fetal gonads reported by others.  相似文献   

20.
Ultrastructure of developing germ cells in the fetal human testis   总被引:4,自引:0,他引:4  
Electron microscopic studies of the testis were performed on 12 human embryos and fetuses between 9 and 30 weeks post conceptionem. According to their ultrastructural features, the fetal germ cells could be divided into the following three stages of differentiation: 1) gonocytes, 2) intermediate cells, and 3) fetal spermatogonia. Sertoli cells were present among the germ cells in all the testes studied. The gonocytes showed the highest nucleo-cytoplasmic ratio. Their round nucleus contained a centrally located, prominent nucleolus. The cytoplasm displayed a well developed Golgi apparatus, lipid droplets and parallel arrays of short cisternae of the rough surfaced endoplasmic reticulum (rER). Microfilaments were numerous, particularly just beneath the cell membrane. The intermediate cells were found to extend several cytoplasmic processes and to contain a moderate number of long, branched and/or widened rER cisterna which were frequently connected to the perinuclear cisterna. Intermediate cells were often connected to one another by intercellular cytoplasmic bridges. The fetal spermatogonia also displayed cytoplasmic bridges. These cells showed the lowest nucleo-cytoplasmic ratio and more condensed nuclear chromatin. The mitochondria were situated close to the nucleus. Many of them were connected by a cementing substance. Lipid droplets and rER cisternae were rare in these cells. Infoldings of the inner nuclear membrane were often present in the gonocytes and in the intermediate cells, but were rarely observed in the fetal spermatogonia. Glycogen particles, polyribosomes, and chromatoid bodies ("nuage") were present in all the three germ cell types. With the maturation of the fetus, the number of gonocytes was found to decrease, whereas the number of fetal spermatogonia increased. The Sertoli cells also changed their ultrastructure, showing an increase in the number of rER cisternae, as well as of microfilaments, lipid droplets, and secondary lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号