首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectra of both enantiomers of naringenin (4',5,7-trihydroxyflavanone) in acetonitrile solution have been measured. The enantiomers were obtained by chiral HPLC separation of the racemic sample. DFT calculations have been performed for relevant conformers and subsequent evaluations of VCD spectra are compared with VCD experiments: safe assignment of the absolute configuration is provided, based in particular on the VCD data. The relevance of the rotational conformers of the hydroxyl groups and of the mobility of phenol moiety is studied: based on this, we provide a first interpretation of the observed intense and broad couplet at 1325/1350 cm(-1). Four conformers contribute to this pattern with different sign and amplitude as shown by DFT calculations. Time dependent DFT calculations have been performed and compared with ECD experimental data, under the same assumption of conformational properties and mobilities investigated by VCD.  相似文献   

2.
Circular dichroism spectroscopy is used to determine the absolute configuration of the constituent sugar residues of bacterial polysaccharides from two strains of Streptococcus sanguis which are important receptors in bacterial coaggregation in the formation of dental plaque. A high-pressure liquid chromatographic method for carbohydrate analysis of glycoproteins, glycolipids, and polysaccharides has been extended to sugar chirality determination by collection of the eluted HPLC fractions and subsequent measurement of their circular dichroism spectra. The method involves methanolysis of the polysaccharide followed by formation of O-benzoyl derivatives and HPLC on reverse-phase columns. Circular dichroism spectra of the collected derivatives in acetonitrile solution in the region 230 nm show large ellipticity bands resulting from "chiral exciton" interaction among the O-benzoyl chromophores which are sensitive to the orientation of hydroxyl groups in the parent sugars. The sensitivity of the method is in the submicrogram range for the absolute configuration of single sugar residues. The circular dichroism of the intact polysaccharide in aqueous solution shows CD bands from the amide chromophore in the region 180 to 220 nm which are sensitive to the chirality of 2-acetamido sugar residues.  相似文献   

3.
Nobuyuki Harada 《Chirality》2020,32(5):535-546
The electronic circular dichroism (ECD) exciton chirality method is very useful for determining the absolute configuration (AC) of chiral compounds. In the ECD spectroscopy, the chromophore-chromophore interaction, ie, exciton coupling, is very important. For example, Harada and Nakanishi first discovered in 1969 that chiral dibenzoates exhibit exciton split bisignate Cotton effects, from the sign of which the screw sense between two long axes of benzoate chromophores, ie, the AC of dibenzoate, can be determined. This method was named the dibenzoate chirality rule and has been successfully applied to various natural products to determine their ACs. During these studies, it was also found that this CD method was expanded to encompass other aromatic and olefin chromophores like naphthalene, diene, enone, etc. Therefore, the name of the dibenzaote chirality rule was changed to the CD exciton chirality method. In 1970s, there were heated controversies about the inconsistency between X-ray Bijvoet and CD exciton chirality methods, which was a shocking and serious problem in the community of molecular chirality research. Harada and coworkers synthesized the most ideal cage compound with two anthracene chromophores to connect X-ray Bijvoet and CD exciton chitality methods and proved that these two methods are consistent with each other.  相似文献   

4.
McConnell O  He Y  Nogle L  Sarkahian A 《Chirality》2007,19(9):716-730
Phenylglycidols substituted in the 2-, 3-, and 4- positions with fluorine, chlorine, and trifluoromethyl, and with methoxy in the 3- position, were synthesized from the corresponding E-cinnamic acids and separated into their (R,R)- and (S,S)- enantiomers using subcritical fluid chromatography with mixtures of MeOH in CO(2), on either a Chiralpak AD or AS chiral stationary phase. These compounds and commercially-available (R,R)- and (S,S)-phenylglycidol were analyzed for their vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and optical rotation (OR) properties to exemplify a strategy whereby the absolute stereochemistry of common and key chiral intermediates is established early in the structure-activity and structure-property relationship phase of a drug discovery program in a pharmaceutical company. From this study, substituents in the phenyl group of the synthesized molecules were found not to grossly alter spectroscopic features, and therefore, diagnostic absorption bands in the respective VCD spectra, and the sign and shape of the measured ECD curves could be used to determine and track the absolute stereochemistry of analogs without necessarily requiring time-consuming ab initio calculations of all low energy conformers for all compounds. VCD, OR, and ECD calculations for the determination of absolute configuration carried out at the DFT level with the hybrid B3PW91 functional and the TZVP basis set were found to be especially useful in this study.  相似文献   

5.
The direct catalytic α‐amidoalkylation of dihydroquinolines with aldehydes bearing oxygen functionalities at different positions in a Mannich‐type reaction has been studied. β‐Alkoxy‐aldehyde 1d gave high enantioselectivity, albeit with an inherently poor diastereoselectivity, while the use of α‐alkoxy aldehydes 1c was detrimental also to enantioselectivity. Mannich‐type reactions have been studied for the first time using new chiral carbohydrate‐derived aldehydes 1a,b showing a reactivity markedly influenced by the presence of water. The chiral glycidic backbone showed a slight but significant influence on the overall stereochemical outcome only when present in α‐position of the aldehyde. The absolute stereochemistry of the products was studied by electronic circular dichroism (ECD) spectra and compared with theoretical calculations. ECD analysis easily provides the absolute configuration of 1,2‐dihydroquinoline derivatives such as quinoline‐1(2H)‐carboxylates.  相似文献   

6.
Synthesis of racemic hexahydropyrrolo[1,2‐a]quinoline derivatives ( 1 ‐ 8 ) was performed by utilizing the Knoevenagel‐[1,5]‐hydride shift‐cyclization domino reaction. Separation of the enantiomers of the chiral products ( 1 ‐ 8 ) was carried out by chiral high‐performance liquid chromatography, and online high‐performance liquid chromatography‐electronic circular dichroism (ECD) spectra were recorded to elucidate the absolute configuration by comparing the experimental and time‐dependent density functional theory‐ECD spectra obtained at various theoretical levels. For 1 of the products, the time‐dependent density functional theory‐ECD calculations allowed determining both the relative and the absolute configuration by distinguishing the 4 stereoisomers. One of the compounds with spiro 1,3‐cyclohexanedione moiety ( 7 ) possessed moderate acetylcholinesterase inhibitory activity, while 3 showed neuroprotective activity in oxygen‐glucose deprivation‐induced neurotoxicity in human neuroblastoma SH‐SY5Y cells.  相似文献   

7.
The combination of the hyphenated techniques LC–MS and LC–SPE–NMR constitutes a powerful platform for the rapid isolation and identification of minor components from natural sources. Electronic circular dichroism (ECD) is a useful tool to determine the absolute configuration of small quantities of chiral molecules. In order to search for minor constituents present in an Ormocarpum kirkii extract, these techniques were applied for the separation and structure elucidation of a series of isoflavanones, biflavanones and biscoumarins. After optimization of chromatographic conditions and subsequent isolation, MS and 1D and 2D NMR data were collected. Experimental and calculated ECD spectra were used in conjunction with NMR data to confirm the absolute configuration of these compounds. Eight compounds were identified for the first time and six have been previously reported. The present approach offers a strategy for accelerating research on natural products.  相似文献   

8.
The conversion into 6,7-dihydro-5H-dibenz[c,e]azepine (DAZ) N-protected amides is a viable route for the determination of the absolute configuration of chiral 2-substituted carboxylic acids. The biphenyl moiety of DAZ, besides being a probe of chirality for the electronic circular dichroism (ECD) spectroscopy, makes these systems suitable for configuration assignment by exploiting the chirality amplification which occurs in nematic liquid crystals. To assess the reliability of the liquid crystal method in detecting the absolute stereochemistry of chiral amides bound to a biphenyl group, we measured the helical twisting power of a series of DAZ-N-protected amides and compared these data with the results obtained from ECD measurements. We will show that the liquid crystal method, corroborated by HTP predictions, is trustworthy with our biphenyl derivatives, even when ECD spectra are ambiguous for the presence of aryl moieties displaying strong UV absorptions in the same range of the biphenyl chromophore.  相似文献   

9.
Verkade's superbases, entrapped in the cavity of enantiopure hemicryptophane cages, have been synthesized with enantiomeric excess (ee) superior to 98%. Their absolute configuration has been determined by using electronic circular dichroism (ECD) spectroscopy. These enantiopure encaged superbases turned out to be efficient chiral derivatizing agents for chiral azides, underlining that the chirality of the cycloveratrylene (CTV) macrocycle induces different magnetic and chemical environments around the phosphazide functions.  相似文献   

10.
This article outlines theory and practice of the comparison of calculated and experimental electronic circular dichroism (ECD) curves to determine the absolute configuration of chiral molecules. The focus is on the evaluation of excited-state calculations giving hints at the identification of the correct bandwidth and the application of the so-called “UV shift” as a correction factor. A similarity factor is introduced, which helps to quantify the degree of matching of curves. In addition, a few common errors are described that can be made during the measurements of ECD and UV spectra―and advice is given of how to avoid these mistakes. All equations mentioned in the article are implemented in our SpecDis software, which has been developed to rapidly compare calculated ECD and UV curves with experimental ones, and to produce graphics in publication quality. Chirality 25:243–249, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
陈宁  武艺  刘冰  许颖  季宇彬 《微生物学通报》2020,47(11):3699-3708
微生物次级代谢产物的化学结构十分复杂,对其绝对构型的确定十分困难。近年来,电子圆二色谱(electronic circular dichroism,ECD)由于其用量少、精度高等优点,在测定绝对构型方面的应用越来越多,已经成为研究微生物次级代谢产物结构的重要方法。本文就电子圆二色谱在微生物次级代谢产物结构研究中的应用进行综述,以期为今后的研究奠定基础。  相似文献   

12.
This study discusses the choice of different simplified models used in computations of electronic circular dichroism (ECD) spectra and other chiroptical characteristics used to determine the absolute configuration (AC) of the complex natural product sibiricumin A. Sections of molecules containing one chiral center with one near an aromatic group have large effects on the ECD spectra. Conversely, when the phenyl group is present on a substituent without a nonstereogenic center, removal of this section will have little effect on ECD spectra. However, these nonstereogenic‐center‐containing sections have large effects on calculated optical rotations (OR) values since the OR value is more sensitive to the geometries of sections in a molecule. In this study, the wrong AC of sibiricumin A was reassigned as (7R,8S,1'R,7'R,8'S)‐ 11 . Chirality 28:612–617, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Morita HE  Kodama TS  Tanaka T 《Chirality》2006,18(10):783-789
Infrared (IR) and vibrational circular dichroism (VCD) spectra of chiral camphor, camphorquinone and camphor-10-sulfonic acid (CSA), known as standard compounds for electronic circular dichroism (ECD) spectroscopy, are measured and their vibrational frequencies, infrared intensities, and rotational strengths are calculated using density functional theory (DFT). The observed IR and VCD spectra of chiral camphor and camphorquinone in carbon tetrachloride solution are reproduced by the DFT calculations, but those of CSA are not. DFT calculations of hydration models, where an anionic CSA specifically binds a few water molecules, are carried out. The average of the simulated VCD spectra in the hydration models is more consistent with the observed spectra. In addition, the wavelengths and dipole and rotational strengths for chiral camphor, camphorquinone, anionic CSA, and the hydration models were calculated by time-dependent DFT. In the region of 280-300 nm, the calculated wavelengths of the ECD bands for chiral camphor and camphorquinone coincide with the observed wavelengths that have been reported, and the calculated wavelengths for the hydration models are closer to the observed wavelengths reported than are those calculated for chiral anionic CSA. Consequently, the analysis combined with VCD and ECD spectroscopy using DFT calculations can elucidate the chirality of optically active molecules, even in an aqueous solution.  相似文献   

14.
The development of density functional theory (DFT) methods for the calculation of vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and transparent spectral region optical rotation (OR) has revolutionized the determination of the absolute configurations (ACs) of chiral molecules using these chiroptical properties. We report the concerted application of DFT calculations of VCD, ECD, and OR to the determination of the ACs of the isoschizozygane alkaloid natural products, isoschizogaline, and isochizogamine, whose ACs have not previously been determined. The ACs of naturally occurring (-)-isoschizogaline and (-)-isoschizogamine, are both determined definitively to be 2R, 7R, 20S, 21S.  相似文献   

15.
Long standing errors in major pharmacopoeiae (BP,USP, and Eu.Ph.) concerning the absolute stereochemistry of the widely used antituberculosis drug (+)-ethambutol have been clarified by unambiguous synthesis and chiral HPLC. on a Pirkle, covalent D -phenylglycine column of perbenzoyl derivatives of each stereomer; the enantiomeric (?)-(R,R) and (+)-(S,S)-ethambutols together with the optically inactive (meso)-(R,S)-ethambutol. This paper describes how circular dichroism (CD) alone and combined with HPLC is used to demonstrate this chiral separation and also to confirm the absolute stereochemistry of each stereomer of ethambutol and its synthetic precursor 2-aminobutan-1-ol from studies of ?exciton coupling.”? The strengths and weaknesses of these chiral techniques are discussed.  相似文献   

16.
The five‐steps synthesis of a hemicryptophane cage combining a benzene‐1,3,5‐tricarboxamide unit and a cyclotriveratrylene (CTV) moiety is described. Chiral high‐performance liquid chromatography (HPLC) was used to resolve the racemic mixture. The absolute configuration of the isolated enantiomers was assigned by comparison of the experimental electronic circular dichroism (ECD) spectra with the calculated ones. X‐ray molecular structures reveal that the capped benzene‐1,3,5‐tricarboxamide unit adopts a structurally chiral conformation in solid state: the chirality of CTV moiety controls the Λ or Δ orientation of the three amides.  相似文献   

17.
A series of representative optically active derivatives of 4‐hydroxy‐5‐alkylcyclopent‐2‐en‐1‐one were prepared from the respective 2‐furyl methyl carbinols via the Piancatelli rearrangement followed by the enzymatic kinetic resolution of racemates. Applicability of chiroptical methods (experimental and calculated electronic circular dichroism [ECD] and vibrational circular dichroism [VCD] spectra) to determine the absolute configuration of both stereogenic centers in 4‐hydroxy‐5‐methylcyclopent‐2‐en‐1‐one was demonstrated. It was also demonstrated that the concurrent application of ECD and VCD spectroscopy can be used for the determination of the configuration of two stereogenic centers. Chirality 26:300–306, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
The electronic circular dichroism (ECD) spectra of naproxen enantiomers were studied as a function of solvents using experimental (circular dichroism) and theoretical (time‐dependent density functional theory) approaches. The (R)‐ and (S)‐naproxen enantiomers presented an unusual inversion in their ECD signals in the presence of ethanol and water when compared with polar aprotic solvents such as acetonitrile. From a practical point of view, these findings deserve great attention because these solvents are widely used for high‐performance liquid chromatography analysis in quality control of chiral pharmaceutical drugs. This is particularly relevant to naproxen because the (S)‐naproxen has anti‐inflammatory properties, whereas (R)‐naproxen is hepatotoxic. A time‐dependent density functional theory computer simulation was conducted to investigate the signal inversion using the solvation model based on density, a reparameterization of polarized continuum model. Electronic circular dichroism signals of conformers were calculated by computer simulation and their contribution to the combined spectra obtained according to Boltzmann weighting. It was found that the experimentally observed ECD signal inversion can be associated with the minor or major contribution of different conformers of naproxen.  相似文献   

19.
It is well known that the biological activity of clavams depends strongly on the absolute configuration at the ring junction carbon atom. Therefore, development of the efficient stereo-controlled synthetic methods for the new oxygen analogs of penams, and the structure-activity relationship studies call for a reliable determination of the absolute stereochemistry of newly synthesized compounds. Recently, we proposed an empirical helicity rule relating the configuration of the bridgehead carbon atom to the sign of the 240 nm band observed in the electronic circular dichroism (ECD) spectrum of clavams. In the present work, we investigate the validity of this structure-property relationship for several enantiomeric pairs of model compounds possessing an additional, interfering chromophore in the molecule. For this purpose a combination of the ECD spectroscopy and the time-dependent density functional theory (TD-DFT) is used. A comparison of the ECD spectra with the theoretical ones obtained by the TD-DFT calculations gives a reasonable interpretation of the Cotton effects observed in the 250-220 nm spectral range. Moreover, the calculations confirm validity of the helicity rule for systems studied here and demonstrate that ECD spectroscopy may be used as a highly sensitive probe of the three-dimensional molecular structure of clavams.  相似文献   

20.
The absolute configurations of plumericin (1) and isoplumericin (2), isolated from Plumeria rubra, were re-assigned based on a combination of X-ray crystal-structure determination and quantum-mechanical calculations of their circular dichroism (CD) spectra. The experimental CD spectra showed an excellent match with those calculated for the (1S,5R,8R,9R,10R) absolute configuration (corresponding to ent-1 and ent-2, resp.), opposite to that generally accepted and published in the literature. Since the (false) plumericin configuration has been often used to derive the absolute configuration of related iridoids by chemical correlation, their absolute configurations also have to be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号