首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusions of the lac genes to the promoters of four structural genes in the methionine biosynthetic pathway, metA, metB, metE, and metF, were obtained by the use of the Mu d(Ap lac) bacteriophage. The levels of beta-galactosidase in these strains could be derepressed by growth under methionine-limiting conditions. Furthermore, growth in the presence of vitamin B12 repressed the synthesis of beta-galactosidase in strains containing a fusion of lacZ to the metE promoter, phi(metE'-lacZ+). Mutations affecting the regulation of met-lac fusions were generated by the insertion of Tn5. Tn5 insertions were obtained at the known regulatory loci metJ and metK. Interestingly, a significant amount of methionine adenosyltransferase activity remained in the metK mutant despite the fact that the mutation was generated by an insertion. Several Tn5-induced regulatory mutations were isolated by screening for high-level beta-galactosidase expression in a phi(metE'-lacZ+) strain in the presence of vitamin B12. Tn5 insertions mapping at the btuB (B12 uptake), metH (B12 dependent tetrahydropteroylglutamate methyltransferase), and metF (5,10-methylenetetrahydrofolate reductase) loci were obtained. The isolation of the metH mutant was consistent with previous suggestions that the metH gene product is required for the repression of metE by vitamin B12. The metF::Tn5 insertion was of particular interest since it suggested that a functional metf gene product was also needed for repression of metE by vitamin B12.  相似文献   

2.
3.
4.
Salmonella typhimurium metE operator-constitutive mutations   总被引:6,自引:0,他引:6  
We used a metE-lacZ fusion phage (lambda Elac) to select for mutants with operator-constitutive mutations in the Salmonella typhimurium metE control region. All of the mutations identified were found to lie within a region containing tandemly-repeating 8-bp palindromes with the consensus sequence 5'-AGACGTCT-3', previously proposed to be the binding region for the metJ-encoded repressor. Lysogens carrying mutant lambda Elac phage exhibit high beta-galactosidase levels that are only partially repressible by methionine. Although repression of metE expression by vitamin B12 is not disrupted in metJ+ lysogens, vitamin B12 repression is disrupted in lysogens lacking an active MetJ repressor. These results suggest that there is an interaction between the metJ-encoded repressor and the vitamin B12 repression system mediated by the metH gene product.  相似文献   

5.
The vitamin B12 (B12)-mediated repression of the metE gene in Escherichia coli and Salmonella typhimurium requires the B12-dependent transmethylase, the metH gene product. It has been proposed that the MetH-B12 holoenzyme complex is involved directly in the repression mechanism. Using Escherichia coli strains lysogenized with a lambda phage carrying a metE-lacZ gene fusion, we examined B12-mediated repression of the metE-lacZ gene fusion. Although B12 supplementation results in a 10-fold repression of metE-lacZ expression, homocysteine addition to the growth medium overrides the B12-mediated repression. In addition, B12-mediated repression of the metE-lacZ fusion is dependent on a functional MetR protein. When a metB mutant was transformed with a high-copy-number plasmid carrying the metE gene, which would be expected to reduce intracellular levels of homocysteine, metE-lacZ expression was reduced and B12 supplementation had no further effect. In a metJ mutant, B12 represses metE-lacZ expression less than twofold. When the metJ mutant was transformed with a high-copy-number plasmid carrying the metH gene, which would be expected to reduce intracellular levels of homocysteine, B12 repression of the metE-lacZ fusion was partially restored. The results indicate that B12-mediated repression of the metE gene is primarily a loss of MetR-mediated activation due to depletion of the coactivator homocysteine, rather than a direct repression by the MetH-B12 holoenzyme.  相似文献   

6.
The repression of MetE synthesis in Escherichia coli by vitamin B12 is known to require the MetH holoenzyme (B12-dependent methyltransferase) and the metF gene product. Experiments using trimethoprim, an inhibitor of dihydrofolate reductase, show that the MetF protein is not directly involved in the repression, but that N5-methyltetrahydrofolic acid (N5-methyl-H4-folate), the product of the MetF enzymatic reaction is required. Since the methyl group from N5-methyl-H4-folate is normally transferred to the MetH holoenzyme to form a methyl-B12 enzyme, the present results suggest that a methyl-B12 enzyme is involved in the vitamin B12 repression of metE expression. Other results argue against the possibility that a methyl-B12 enzyme functions in this repression solely by decreasing the cellular level of homocysteine, which is required for MetR activation of metE expression. Experiments with metJ mutants show that the MetJ protein mediates about 50% of the repression of metE expression by B12 but is totally responsible for the regulation of metF expression by vitamin B12.  相似文献   

7.
8.
Regulation of methionine synthesis in Escherichia coli   总被引:3,自引:1,他引:2  
  相似文献   

9.
New Methionine Structural Gene in Salmonella typhimurium   总被引:6,自引:4,他引:2       下载免费PDF全文
Eight metH mutants in Salmonella typhimurium with closely linked sites of mutation which could grow only on methionine were isolated from a metE mutant deficient in N(5)-methyltetrahydropteroyltriglutamate-homocysteine transmethylase; their deficiency in cobalamin-dependent N(5)-methyltetrahydrofolate-homocysteine transmethylase was supported by the results of enzyme studies of one of them. Cotransduction of metH and metA (homoserine O-transsuccinylase) mutants was obtained, thus revealing linkage between a second pair of the six known methionine structural genes. One metH mutant clearly differed from the rest in that it reverted at a higher frequency, was temperature sensitive, complemented all other metH mutants, and was located farthest from the metA gene.  相似文献   

10.
Operon fusions were isolated between Mu dX (lac CmR ApR) and btuB, the gene encoding the multivalent vitamin B12 outer membrane receptor. Using these fusions, vitamin B12-mediated repression of btuB in Escherichia coli was demonstrated. Mutations in metH, metE and ompR as well as exogenous methionine, membrane pertubants, high osmolar conditions and temperature had no major effect on the expression of the btuB gene.  相似文献   

11.
12.
Methionine is an important amino acid which acts not only as a substrate for protein elongation but also as the initiator of protein synthesis. The genes of the met regulon, which consists of 10 biosynthetic genes (metA, metB, metC, metE, metF, metH, metK, metL, metQ, and metX), two regulatory genes (metJ and metR), and the methionyl tRNA synthetase gene (metG), are scattered throughout the chromosome. The only linked genes are metK and metX at 63.6 min, metE and metR at 86.3 min, and the metJBLF gene cluster at 89 min. metBL form the only met operon.  相似文献   

13.
14.
Methionine is produced by methylation of homocysteine. Sinorhizobium meliloti 102F34 possesses only one methionine synthase, which catalyzes the transfer of a methyl group from methyl tetrahydrofolate to homocysteine. This vitamin B(12)-dependent enzyme is encoded by the metH gene. Glycine betaine can also serve as an alternative methyl donor for homocysteine. This reaction is catalyzed by betaine-homocysteine methyl transferase (BHMT), an enzyme that has been characterized in humans and rats. An S. meliloti gene whose product is related to the human BHMT enzyme has been identified and named bmt. This enzyme is closely related to mammalian BHMTs but has no homology with previously described bacterial betaine methyl transferases. Glycine betaine inhibits the growth of an S. meliloti bmt mutant in low- and high-osmotic strength media, an effect that correlates with a decrease in the catabolism of glycine betaine. This inhibition was not observed with other betaines, like homobetaine, dimethylsulfoniopropionate, and trigonelline. The addition of methionine to the growth medium allowed a bmt mutant to recover growth despite the presence of glycine betaine. Methionine also stimulated glycine betaine catabolism in a bmt strain, suggesting the existence of another catabolic pathway. Inactivation of metH or bmt did not affect the nodulation efficiency of the mutants in the 102F34 strain background. Nevertheless, a metH strain was severely defective in competing with the wild-type strain in a coinoculation experiment.  相似文献   

15.
An Escherichia coli S-30 DNA directed protein synthesis system was used to study the effect of homocysteine on the in vitro expression of the metE, metH and metR genes. In the presence of purified MetR protein, which is known to regulate the expression of these genes, homocysteine activates metE expression and inhibits both metR and metH expression. These findings support the recent in vivo results of Urbanowski, M.L. and Stauffer, G.V. (1989), J. Bacteriol. 171, 3277-3281.  相似文献   

16.
17.
18.
Using an Escherichia coli lac deletion strain lysogenized with a lambda phage carrying a metH-lacZ gene fusion, we isolated trans-acting mutations that result in simultaneous 4- to 6-fold-elevated metH-lacZ expression, 5- to 22-fold-lowered metE-lacZ expression, and 9- to 20-fold-elevated metR-lacZ expression. The altered regulation of these genes occurs in the presence of high intracellular levels of homocysteine, a methionine pathway intermediate which normally inhibits metH and metR expression and stimulates metE expression. P1 transductions and complementation tests indicate that the mutations are in the metR gene. Our data suggest that the mutations result in an altered MetR activator protein that has lost the ability to use homocysteine as a modulator of gene expression.  相似文献   

19.
Regulation of Homocysteine Biosynthesis in Salmonella typhimurium   总被引:7,自引:4,他引:3       下载免费PDF全文
The regulation of the homocysteine branch of the methionine biosynthetic pathway in Salmonella typhimurium has been reexamined with the aid of a new assay for the first enzyme. The activity of this enzyme is subject to synergistic feedback inhibition by methionine plus S-adenosylmethionine. The synthesis of all three enzymes of the pathway is regulated by noncoordinate repression. The enzymes are derepressed in metJ and metK regulatory mutants, suggesting the existence of regulatory elements common to all three. Experiments with a methionine/vitamin B(12) auxotroph (metE) grown in a chemostat on methionine or vitamin B(12) suggested that the first enzyme is more sensitive to repression by methionine derived from exogenous than from endogenous sources. metB and metC mutants grown on methionine in the chemostat did not show hypersensitivity to repression by exogenous methionine. Therefore, it appears that the metE chemostat findings are peculiar to the phenotype of this mutant; such evidence suggests a possible role for a functional methyltetrahydrofolate-homocysteine transmethylase in regulating the synthesis of the first enzyme. Thus there appear to be regulatory elements which are common to the repression of all three enzymes, as well as some that are unique to the first enzyme. The nature of the corepressor is not known, but it may be a derivative of S-adenosylmethionine. metJ and metK mutants of Salmonella have a normal capacity for S-adenosylmethionine synthesis but may be blocked in synthesis or utilization of a corepressor derived from it.  相似文献   

20.
The Escherichia coli K-12 metH gene, encoding the vitamin B12-dependent homocysteine transmethylase, is located between iclR and lysC in the 91-min region of the chromosome. The metH gene has been sequenced and reveals an open reading frame of 3600 bp encoding a polypeptide of 1200 amino acids (aa) with a calculated Mr of 132 628. The first 414 aa of the deduced polypeptide sequence are 92% identical to the 414 aa deduced from the partially sequenced Salmonella typhimurium LT2 metH gene. In-frame fusions of metH to lacZ were used to confirm the reading frame of the metH gene and to study its regulation. metH was repressed tenfold, presumably indirectly, by L-methionine and the metJ gene product, while vitamin B12 did not induce de novo synthesis of MetH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号