首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has previously been reported that in the isolated cat superior cervical ganglion (SCG) labeled with tritiated norepinephrine (3H-NE), the stimulation of the preganglionic trunk at 10 Hz as well as the exposure to 100 microM exogenous acetylcholine (ACh), produced a Ca++-dependent release of 3H-NE. The present results show that a Ca++-dependent release of 3H-NE was produced also by exposure to either 50 microM veratridine or 60 mM KCl. Tetrodotoxin (0.5 microM) abolished the release of 3H-NE induced by preganglionic stimulation, ACh and veratridine but did not modify the release evoked by KCl. The metabolic distribution of the radioactivity released by the different depolarizing stimuli showed that the 3H-NE was collected mainly unmetabolized. In the cat SCG neither the release of 3H-NE evoked by KCl nor the endogenous content of NE was modified by pretreatment with 6-OH-dopamine (6-OH-DA). On the other hand, this chemical sympathectomy depleted the endogenous content of NE in the cat nictitating membrane, whose nerve terminals arise from the SCG. The data presented suggest that the depolarization-coupled release of NE from the cat SCG involves structures that are different to nerve terminals and that contain Na+ channels as well as Ca++ channels.  相似文献   

2.
The isolated cat superior cervical ganglion (SCG) was labeled in vitro with either 3H-norepinephrine (3H-NE) or 3H-choline and stimulated through its preganglionic trunk. The release of 3H-NE and 3H-acetylcholine (3H-ACh) elicited by the stimulation was measured under control conditions and in the presence of drugs. The incubation during 30 min with 10 microM morphine lead to a 70% decrease in the amount of 3H-NE released in response to the preganglionic stimulation (10 Hz, 80 V, during 5 min). No further decrease in 3H-NE release was produced by a 10 times higher concentration of morphine. The reduction in 3H-NE release caused by morphine was coincident with a 60% increase in the endogenous content of NE. Both effects of morphine were entirely prevented by an antagonist of opioid receptors, 1.0 microM naltrexone. The opioid antagonist did not modify by itself either the stimulation-induced release of 3H-NE or the endogenous content of NE. The basal efflux of 3H-NE was not altered by morphine. In ganglia labeled with 3H-choline, morphine (10 and 100 microM) did not modify either the basal efflux of 3H-ACh or the release of 3H-ACh evoked by stimulation of the preganglionic trunk (5 Hz, 40 V, during 5 min). These observations suggest that in the cat SCG morphine has a direct action on the dendrites of the postganglionic neuron which store and release NE. The effects of morphine in vitro on 3H-NE release and on the tissue levels of NE may be mediated through the interaction with dendritic opioid receptors.  相似文献   

3.
K A Yurko  L F Quenzer 《Life sciences》1986,38(15):1393-1397
Trifluoperazine (5-200 microM) stimulated the release of 3H-NE from isolated whole pineal glands in a dose dependent manner. Trifluoperazine-induced release was not dependent on extracellular Ca++, whereas 60 mM K+-evoked release was attenuated in the presence of EGTA and zero Ca++ Krebs. 60 mM K+ and 50 microM trifluoperazine produced an additive effect on 3H-NE release. Clonidine (5 microM) significantly reduced trifluoperazine-induced release by approximately 50% in the presence of Ca++, and in its absence, clonidine significantly attenuated the trifluoperazine response by 42%. Thus trifluoperazine may be acting upon the alpha 2 receptor or intracellular stores of Ca++. These intracellular interactions remain for further study.  相似文献   

4.
《Life sciences》1995,57(20):PL327-PL332
Facilitatory effects of prenalterol and albuterol (β1- and β2-selective adrenergic agonists, respectively) in the absence and presence of propranolol (a nonselective β-adrenergic antagonist), ICI 89,406 or ICI 118,551 (β1- and β2-selective adrenergic antagonists, respectively) on electrical stimulation-evoked release of 3H-NE from rat cerebral cortical slices were assessed. Albuterol (0.1 –100 nM) increased evoked release of 3H-NE from the cerebral cortical slices with greater potency than prenalterol (1 – 100 nM). The β2-adrenergic antagonist ICI 118,551 (1 nM) and propranolol (50 nM) abolished the facilitatory effects of albuterol (0.1 and 10 nM). In contrast, the βl-adrenergic antagonist ICI 89,406 (1 nM) did not alter the release-enhancing effect of albuterol. Prenalterol (10 and 100 nM)-induced facilitation of evoked release of 3H-NE was abolished by ICI 118,551; propranolol reduced the effect of 10 nM prenalterol and abolished that of 100 nM prenalterol. ICI 89,406 inhibited the effect of 100 nM prenalterol without altering that of 10 nM prenalterol. Basal release of 3H-NE was not altered by the drugs used in this study. These results suggest that facilitation of 3H-NE release induced by β-adrenergic agonists is mediated primarily by β2-adrenergic receptors.  相似文献   

5.
We previously demonstrated that 3,4-dihydro-3,4-dibromo-6-bromomethylcoumarin (dihydrocoumarin I) inhibited high-molecular-weight urokinase through a mechanism-based (suicide) inactivation (M. Reboud-Ravaux, G. Desvages and F. Chapeville (1982) FEBS Lett. 140, 58-62). In order to define the site of alkylation, peptic peptides were prepared from urokinase (heavy form) treated first by tritiated dihydrocoumarin I. After separation by reverse-phase HPLC, the labelled fragments were sequenced. His-46 in the B-chain of urokinase (heavy form) had been selectively alkylated, proving that this amino acid forms part of the active site. 3,4-Dihydro-3-benzyl-6-chloromethylcoumarin (dihydrocoumarin II) was more reactive than dihydrocoumarin I against urokinase (heavy form) by a factor of 130. Low-molecular-weight urokinase was inactivated by dihydrocoumarin II slightly more slowly than urokinase (heavy form), showing a decrease of 30% in the corresponding second-order rate constant. In contrast, dihydrocoumarin I displayed an analogous reactivity against light and heavy forms of urokinase. As expected, in the absence of the alkylating moiety, such as in 3,4-dihydro-3-benzylcoumarin (dihydrocoumarin III), no inactivation was observed. It is note-worthy that dihydrocoumarin II which carried an extra-aromatic group fitted well within the active site of light and heavy urokinases, suggesting a nonpolar character for their primary binding site.  相似文献   

6.
The uptake and K(+)-evoked (40 mM) release of 3H-norepinephrine (3H-NE) in mesodiencephalic synaptosomes of adult and senescent rats and the effect of N-acetylaspartic acid (NAA) on these processes have been studied. It has been shown that the uptake of 3H-NE by old rats is reduced considerably. The K(+)-evoked release of 3H-NE from rats synaptosomes is significantly decreased in aged rats. In the presence of 10(-4)-3.10(-3) M NAA the uptake of 3H-NE by adult and senescent rats synaptosomes remains unchanged. In these concentrations NAA inhibits the K(+)-evoked release of 3H-NE from synaptosomes of adult rats, but it exerts no effect on this process in senescent rats.  相似文献   

7.
The binding of 3H-norepinephrine (L-3H-NE, 1.0 X 10(-9) M) to plasma proteins of the dog and the rabbit was studied under controlled conditions. Destruction of NE occurred less rapidly at 22 degrees than at 37 degrees. Binding measured at 22 degrees was equivalent to that at 37 degrees, while binding measured at 0 degree was greater than that at 37 degrees. Therefore, losses of plasma NE were minimized by incubation of samples at 22 degrees for no longer than 30 minutes. L-3H-NE binding was examined in the absence and presence of 10(-9) to 10(-2) M non-labeled L-NE, DL-NE, DL-normetanephrine (NM), DL-epinephrine (E), dopamine (DA), and catechol (C). Specific binding of L-3H-NE varied in the range of NE concentrations (L-3H-NE + non-labeled NE) from 10(-9) M (18.7 +/- 3.1%, rabbit; 25.6 +/- 4.8%, dog) to 10(-6) M (10.8 +/- 3.1%, rabbit; 15.2 +/- 3.6%, dog). Calculated binding constants (KD) were consistent with binding to circulating proteins such as globulins or albumin (4.2 +/- 1.2 X 10(-5) M, rabbit; 5.4 +/- 1.7 X 10(-5) M, dog). In plasma from both species, non-labeled DL-NE, L-NE, E, DA, and C, but not NM (from 10(-9) to 10(-2) M) each significantly displaced L-3H-NE from its binding site in a manner similar to displacement produced by non-labeled NE. The results demonstrate that 1) NE is bound to plasma proteins, although to a lesser extent than had been reported by other investigators; and 2) the binding of catecholamines to plasma proteins may be mediated by the catechol ring.  相似文献   

8.
There is good evidence indicating that ion-transport pathways in the apical regions of lingual epithelial cells, including taste bud cells, may play a role in salt taste reception. In this article, we present evidence that, in the case of the dog, there also exists a sugar-activated ion-transport pathway that is linked to sugar taste transduction. Evidence was drawn from two parallel lines of experiments: (a) ion-transport studies on the isolated canine lingual epithelium, and (b) recordings from the canine chorda tympani. The results in vitro showed that both mono- and disaccharides in the mucosal bath stimulate a dose-dependent increase in the short-circuit current over the concentration range coincident with mammalian sugar taste responses. Transepithelial current evoked by glucose, fructose, or sucrose in either 30 mM NaCl or in Krebs-Henseleit buffer (K-H) was partially blocked by amiloride. Among current carriers activated by saccharides, the current response was greater with Na than with K. Ion flux measurements in K-H during stimulation with 3-O-methylglucose showed that the sugar-evoked current was due to an increase in the Na influx. Ouabain or amiloride reduced the sugar-evoked Na influx without effect on sugar transport as measured with tritiated 3-O-methylglucose. Amiloride inhibited the canine chorda tympani response to 0.5 M NaCl by 70-80% and the response to 0.5 M KCl by approximately 40%. This agreed with the percent inhibition by amiloride of the short-circuit current supported in vitro by NaCl and KCl. Amiloride also partially inhibited the chorda tympani responses to sucrose and to fructose. The results indicate that in the dog: (a) the ion transporter subserving Na taste also subserves part of the response to K, and (b) a sugar-activated, Na-preferring ion-transport system is one mechanism mediating sugar taste transduction. Results in the literature indicate a similar sweet taste mechanism for humans.  相似文献   

9.
Catecholamines are readily detectable in human saliva but their origin is unclear. Norepinephrine (NE) was stable in saliva stored at 4 degrees for 2 hours but 11 +/- 3% degraded after storage at 25 degrees for 1 hour. We intravenously infused 3H-NE into humans and measured levels of 3H-NE and its metabolites in both saliva and forearm venous plasma (a site whose plasma NE levels reflect both local uptake and release of NE). 3H-NE levels in saliva continued to rise for 1 hour even though forearm plasma levels had plateaued by 5 min. By 65 min into the infusion the ratio of 3H-NE:non-radioactive NE was similar in saliva and forearm venous plasma. The ratio of NE:epinephrine (E) was similar in saliva and forearm venous plasma at all time points. Chewing induced salivation, and at least tripled the amount of NE, E and 3H-NE released into saliva per minute, but decreased their concentration in saliva by as much as one half. Saliva NE level was unaltered after 15 min of standing but was increased by 31% after 1 hour of upright posture. Our data imply that the NE present in human saliva comes from both the bloodstream and from salivary sympathetic nerves. The finding that diffusion of blood NE into saliva takes roughly 1 hour to complete suggests that NE in saliva is a poor index of acute changes in sympathetic activity.  相似文献   

10.
BACKGROUND/AIMS: 3,4-Dimethoxy-2-phenylethylamine is catalyzed to its aldehyde derivative by monoamine oxidase B, but the subsequent oxidation into the corresponding acid has not yet been studied. Oxidation of aromatic aldehydes is catalyzed mainly by aldehyde dehydrogenase and aldehyde oxidase. METHODS: The present study examines the metabolism of 3,4-dimethoxy-2-phenylethylamine in vitro and in freshly prepared and cryopreserved guinea pig liver slices and the relative contribution of different aldehyde-oxidizing enzymes was estimated by pharmacological means. RESULTS: 3,4-Dimethoxy-2- phenylethylamine was converted into the corresponding aldehyde when incubated with monoamine oxidase and further oxidized into the acid when incubated with both, monoamine oxidase and aldehyde oxidase. In freshly prepared and cryopreserved liver slices, 3,4-dimethoxyphenylacetic acid was the main metabolite of 3,4-dimethoxy-2- phenylethylamine. 3,4-Dimethoxyphenylacetic acid formation was inhibited by 85% from disulfiram (aldehyde dehydrogenase inhibitor) and by 75-80% from isovanillin (aldehyde oxidase inhibitor), whereas allopurinol (xanthine oxidase inhibitor) inhibited acid formation by only 25-30%. CONCLUSIONS: 3,4- Dimethoxy-2-phenylethylamine is oxidized mainly to its acid, via 3,4-dimethoxyphenylacetaldehyde, by aldehyde dehydrogenase and aldehyde oxidase with a lower contribution from xanthine oxidase.  相似文献   

11.
Eighteen normotensive and 19 unmedicated hypertensive black and white male subjects were studied twice, during a 10 meq sodium diet for 5 days and a 200 meq sodium diet for 4 days. The subjects received an infusion of 3H-norepinephrine (3H-NE) during both low and high sodium diets to measure NE clearance. Dietary sodium and blood pressure classification had no effect on 3H-NE clearance. Infusion of pressor doses of NE also failed to alter 3H-NE clearance. Both normotensive and hypertensive blacks had increased 3H-NE clearance rates (p less than .001). The increased rate of 3H-NE clearance among blacks was not affected by alterations in dietary sodium or by pressor doses of NE. Increased NE clearance by blacks may help explain observations that white hypertensives in the age range we studied (25-46 years) have elevated plasma NE levels, while blacks have normal NE levels.  相似文献   

12.
Crude synaptosome (P2) fractions prepared from rat striatum and hypothalamus, preloaded with 3H-dopamine (DA) or 3H-norepinephrine (NE), were incubated at 37 degrees C for 5 min. The addition of reserpine at a concentration of 0.1 microM to the striatal synaptosomes substantially depleted 3H-DA to about 45% of control values, but had no effect on 3H-NE. An analogous difference in sensitivity to reserpine, though less pronounced, was observed between 3H-DA and 3H-NE loaded into hypothalamic synaptosomes. Preloaded synaptosome fractions prepared from striatum and hypothalamus were also lysed under hypoosmotic conditions, filtered, and then washed with 130 mM KH2PO4 buffer, pH 7.4, maintained at 0 degrees or 37 degrees C. Washing with 0 degrees C buffer produced no appreciable change in the amount of 3H-DA or 3H-NE retained by the hypoosmotic-resistant subsynaptosomal fractions. Increasing the temperature of the wash buffer to 37 degrees C, however, elicited a volume-dependent depletion of 3H-DA about 2.5-fold higher than that obtained for 3H-NE. Consistent with this finding, the retention of 3H-DA by a crude vesicle fraction prepared from striatum was found to be significantly less than the retention of 3H-NE following 4.5 and 6 min of incubation at 20 degrees C. Thus, in intact synaptosomes, 3H-DA appears to be stored in a form that is more susceptible than 3H-NE to depletion by reserpine, and this effect may be related to differences between the intravesicular storage stability of DA and NE.  相似文献   

13.
3-Hydroxychrysene, a metabolite of the polycyclic aromatic hydrocarbon (PAH) chrysene, was metabolised by rat liver microsomal preparations obtained from Arochlor 1254-pretreated rats. Eight major metabolites were isolated by high performance liquid chromatography and characterised by u.v. spectroscopy and a variety of mass spectrometric techniques. The metabolites were unambiguously identified as 9-hydroxy-trans-1,2-dihydroxy-1,2-dihydrochrysene and 9-hydroxy-r-1,t-2,t-3,c-4-tetrahydroxy-1,2,3,4-tetrahydrochrysene and tentatively identified as 3-hydroxy-trans-5,6-dihydroxy-5,6-dihydrochrysene (since chrysene is a symmetrical molecule the 3- and 9-positions are equivalent), 9-hydroxy-trans-3,4-dihydroxy-3,4-dihydrochrysene, 1,2,3-trihydroxy-1,2,3,4-tetrahydrochrysene, an oxidised phenol and two diphenols. These results indicate that 3-hydroxychrysene can be further metabolised via a number of different pathways including those involving the formation of phenol- and triol-epoxides.  相似文献   

14.
The production of tritiated aldosterone and tritiated SM (a saponifiable 18-hydroxycorticosterone derivative) by rat adrenals were studied at various incubation times in absence or presence of two concentrations of ACTH. Tritiated 18-hydroxycorticosterone or 18-deoxyaldosterone served as precursors. The lower ACTH concentration (150 pM) increased the production of tritiated aldosterone. Whereas, the higher ACTH concentration (1.5 microM) stimulated tritiated aldosterone production at shorter incubation time (30 min), while after 60 min it inhibited. This time dependency would reflect variations in the levels of endogenous steroids. On the other hand, the effects of ACTH on tritiated SM production were opposite to those on tritiated aldosterone. In effect, while 150 pM ACTH inhibited SM production, 1.5 microM ACTH stimulated it. These results suggest that ACTH promotes opposite effects on the productions of aldosterone and SM and therefore both productions would be coordinated under the regulation of ACTH.  相似文献   

15.
L-[U-14C]-2, 3-diaminopropionate was metabolised slowly in the rat. Nearly 75% of the total radioactivity could be accounted for by respiratory CO2 (60%) and by the concentration of the isotope in the liver and kidney (15%). The rate limiting step in its metabolism may be the activity of 2, 3-diaminopropionate: ammonia lyase in the liver. It is more readily metabolised than its 3-oxalyl derivative, which is neurotoxic.  相似文献   

16.
Comparative study of the uptake of 3H-epinephrine (3H-EN) and 3H-norepinephrine (3H-NE) into rat brain crude synaptosomes and effect of psychotropic drugs of different classes on this process showed that isolated nerve terminals had their own transport system for EN. The crude synaptosomal fraction had two transport system's for EN; high-specific active uptake with high affinity (KM = 3.7 + 0.21 microM) and low-affinity uptake (KM2 = 98.0 + 47.5 microM). En accumulation was saturable, stereo-specific and inhibited by ouabain (3 X 10(-3) M), protoveratrine A and B (10(-4) M), NaN3 (2 X 10(-3) M), 2,4-dinitrophenol (2 X 10(-3) M), p-chloromercuribenzoate (10(-4) M). Actinomycin D had no effect on the uptake of 3H-EN. 3H-HE was accumulated by two uptake system: 1-high affinity uptake system with KM values of 0.49 + 0.13 microM, 2-low affinity uptake system with KM values of 21.1 + 7.71 microM. Amphetamine, mesocarb, chlorpromazine, fluphenazine and haloperidol were equally effective inhibitors of 3H-EN and 2H-HE uptake. Imipramine, phenazepam, diazepam and carbamazepine (5 X 10(-5) M) had no effect on the uptake of 3H-NE. Imipramine, zimelidine, norzimelidine and viloxazine (5 X 10(-5) M) were more potent inhibitors of the 3H-EN uptake than that of 3H-NE.  相似文献   

17.
The in vitro uptake of [3H]inulin and horseradish peroxidase (HRP) has been studied in innervated and 6 days denervated extensor digitorum longus muscle of the mouse. Both markers were taken up at a higher rate in denervated muscle. The increase in uptake after denervation was, however, larger for HRP than for [3H]inulin. After 2 h incubation at 37 degrees C, pH 7.3, in the presence of equimolar concentrations of HRP and [3H]inulin (approx. 2.1 microM), the uptake of HRP was approx. 8 times as great as the uptake of [3H]inulin in the same innervated muscles. In denervated muscle the HRP uptake was approx. 19 times as great as the [3H]inulin uptake in the same muscles. Various possible explanations of these differences in uptake have been considered and tested experimentally. [3H]Inulin uptake in skeletal muscle has previously been shown to obey bulk kinetics. The present investigation shows the HRP uptake to obey saturation kinetics. The HRP uptake shows dependency on divalent cations and is reduced if incubation is carried out at pH 6.4. The uptake of HRP, when used at a low, non-saturating concentration (10 micrograms/ml approx. 0.25 microM), is inhibited greater than or equal to 60% by yeast mannan (0.1 mg/ml), ribonuclease B (0.1 mg/ml, approx. 7.4 microM), mannose (30 mM), monodansylcadaverine (1 mM), chloroquine (100 microM), trifluoperazine (25 microM) or maleic acid (2 mM). It is concluded that HRP is taken up in innervated and denervated skeletal muscle by a process of receptor-mediated endocytosis and that this uptake is under neurotrophic control.  相似文献   

18.
[3H]Dynorphin A(1-8) is readily metabolised by rat lumbosacral spinal cord tissue in vitro, affording a variety of products including a significant amount (20% recovered activity) of [3H][Leu5]enkephalin. In the presence of the peptidase inhibitors bestatin, captopril, thiorphan, and leucyl-leucine, [3H][Leu5]enkephalin was the major metabolic product, accounting for 60% of recovered activity. Production of [3H][Leu5]enkephalin was seen across all gross brain regions. The enzyme responsible for the cleavage has an optimal substrate length of 8-13 amino acids and is inhibited by N-[1-(RS)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, a site-directed inhibitor of the metalloendopeptidase EC 3.4.24.15. However the enzymic breakdown also has properties in common with involvement of endo-oligopeptidase A. Possible consequences of the formation of [Leu5]-enkephalin from the smaller dynorphins are discussed.  相似文献   

19.
The influence of autologous polymorphonuclear cells (PMN) on lymphocyte reactivity was investigated by monitoring the uptake of tritiated thymidine by unstimulated, phytohemagglutinin (PHA)-stimulated, and fetuin-stimulated lymphocytes in vitro. Addition of PMN at PMN-to-lymphocyte ratios (P:L) of 0.5 to 2.0 progressively inhibited lymphocyte reactivity. Soluble extracts, obtained by sonication and ultracentrifugation (100,000g for 90 min) of PMN, also inhibited lymphocytes. The PMN-derived inhibitor(s) is noncytotoxic, heat labile (56 °C for 60 min), resistant to freeze-thawing (20 cycles), and appears to be nondialyzable. Inhibition was more marked when the factor was added at the initiation of lymphocyte cultures than when added with the tritiated thymidine 24 hr prior to cell harvest. Thus thymidine released by PMN which diluted the radiolabeled nucleotide and degradation of the tritiated thymidine did not explain these results. Lymphocytes incubated for 3 days in the medium containing the inhibitor reacted normally to PHA following washing, indicating that inhibition was reversible. These results suggest that a PMN-derived lymphocyte inhibitor(s) may modulate lymphocyte-mediated immune reactivity.  相似文献   

20.
Prostaglandins (PG) of both the E and F series may serve as modulators of norepinephrine (NE) release from peripheral sympathetic neurons. We have studied the effects of PGE2 and PGF on the accumulation and release of 3H-NE in the CNS using synaptosomes isolated from rat hypothalami.The release of 3H-NE from synaptosomes superfused with Krebs-Ringer bicarbonate buffer was multiphasic with an initial fast release phase followed by a slower release. Raising KC1 concentration of the superfusion medium to 56mM during the slow release phase is known to stimulate 3H-NE release. PGE2 (1 × 10−6M) attenuated 3H-NE release during the fast phase and reduced the amount of 3H-NE released due to KC1 stimulation. At lower concentrations of PGE2 there was no change in the release profile. PGF was without effect on 3H-NE release at all concentrations tested.The accumulation of 3H-NE was significantly diminished by PGE2 at a concentration of 1 × 10−6M, while a lower concentration (1 × 10−7M) was ineffective. PGF had no effect on 3H-NE accumulation at all concentrations investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号