首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The X-ray structure of the Escherichia coli aspartate transcarbamoylase with the bisubstrate analog phosphonacetyl-L-aspartate (PALA) bound shows that PALA interacts with Lys84 from an adjacent catalytic chain. To probe the function of Lys84, site-specific mutagenesis was used to convert Lys84 to alanine, threonine, and asparagine. The K84N and K84T enzymes exhibited 0.08 and 0.29% of the activity of the wild-type enzyme, respectively. However, the K84A enzyme retained 12% of the activity of the wild-type enzyme. For each of these enzymes, the affinity for aspartate was reduced 5- to 10-fold, and the affinity for carbamoyl phosphate was reduced 10- to 30-fold. The enzymes K84N and K84T exhibited no appreciable cooperativity, whereas the K84A enzyme exhibited a Hill coefficient of 1.8. The residual cooperativity and enhanced activity of the K84A enzyme suggest that in this enzyme another mechanism functions to restore catalytic activity. Modeling studies as well as molecular dynamics simulations suggest that in the case of only the K84A enzyme, the lysine residue at position 83 can reorient into the active site and complement for the loss of Lys84. This hypothesis was tested by the creation and analysis of the K83A enzyme and a double mutant enzyme (DM) that has both Lys83 and Lys84 replaced by alanine. The DM enzyme has no cooperativity and exhibited 0.18% of wild-type activity, while the K83A enzyme exhibited 61% of wild-type activity. These data suggest that Lys84 is not only catalytically important, but is also essential for binding both substrates and creation of the high-activity, high-affinity active site. Since low-angle X-ray scattering demonstrated that the mutant enzymes can be converted to the R-structural state, the loss of cooperativity must be related to the inability of these mutant enzymes to form the high-activity, high-affinity active site characteristic of the R-functional state of the enzyme.  相似文献   

2.
Several types of conditions allow the disconnection of homotropic and heterotropic interactions in Escherichia coli aspartate transcarbamylase. A model that includes a concerted gross conformational change corresponding to the homotropic cooperative interactions between the catalytic sites and local “site by site” effects promoted by the effectors accounts for this disconnection as well as for the other known properties of the enzyme. However, the substrate concentration influences the extent of stimulation and feedback inhibition of the catalytic activity by the effectors. This result is explained by assuming that these effectors promote a “primary effect”, which is exerted locally “site by site”, and a “secondary effect”, which is mediated by the substrate. As predicted by the model, relaxed (R) forms of the enzyme show only the primary effect. In addition 2-ThioU-aspartate transcarbamylase, a modified form of the enzyme in which the homotropic cooperative interactions between the catalytic sites are selectively abolished, shows the same heterogeneity in CTP binding sites as normal aspartate transcarbamylase.  相似文献   

3.
A hybrid version of Escherichia coli aspartate transcarbamoylase was investigated in which one catalytic subunit has the wild-type sequence, and the other catalytic subunit has Glu-239 replaced by Gln. Since Glu-239 is involved in intersubunit interactions, this hybrid could be used to evaluate the extent to which T state stabilization is required for homotropic cooperativity and for heterotropic effects. Reconstitution of the hybrid holoenzyme (two different catalytic subunits with three wild-type regulatory subunits) was followed by separation of the mixture by anion-exchange chromatography. To make possible the resolution of the three holoenzyme species formed by the reconstitution, the charge of one of the catalytic subunits was altered by the addition of six aspartic acid residues to the C terminus of each of the catalytic chains (AT-C catalytic subunit). Control experiments indicated that the AT-C catalytic subunit as well as the holoenzyme formed with AT-C and wild-type regulatory subunits had essentially the same homotropic and heterotropic properties as the native catalytic subunit and holoenzyme, indicating that the addition of the aspartate tail did not influence the function of either enzyme. The control reconstituted holoenzyme, in which both catalytic subunits have Glu-239 replaced by Gln, exhibited no cooperativity, an enhanced affinity for aspartate, and essentially no heterotropic response identical to the enzyme isolated without reconstitution. The hybrid containing one normal and one mutant catalytic subunit exhibited homotropic cooperativity with a Hill coefficient of 1.4 and responded to the nucleotide effectors at about 50% of the level of the wild-type enzyme. Small angle x-ray scattering experiments with the hybrid enzyme indicated that in the absence of ligands it was structurally similar, but not identical, to the T state of the wild-type enzyme. In contrast to the wild-type enzyme, addition of carbamoyl phosphate induced a significant alteration in the scattering pattern, whereas the bisubstrate analog N-phosphonoacetyl-L-aspartate induced a significant change in the scattering pattern indicating the transition to the R-structural state. These data indicate that in the hybrid enzyme only three of the usual six interchain interactions involving Glu-239 are sufficient to stabilize the enzyme in a low affinity, low activity state and allow an allosteric transition to occur.  相似文献   

4.
Y Zhang  E R Kantrowitz 《Biochemistry》1989,28(18):7313-7318
Lysine-60 in the regulatory chain of aspartate transcarbamoylase has been changed to an alanine by site-specific mutagenesis. The resulting enzyme exhibits activity and homotropic cooperativity identical with those of the wild-type enzyme. The substrate concentration at half the maximal observed specific activity decreases from 13.3 mM for the wild-type enzyme to 9.6 mM for the mutant enzyme. ATP activates the mutant enzyme to the same extent that it does the wild-type enzyme, but the concentration of ATP required to reach half of the maximal activation is reduced approximately 5-fold for the mutant enzyme. CTP at a concentration of 10 mM does not inhibit the mutant enzyme, while under the same conditions CTP at concentrations less than 1 mM will inhibit the wild-type enzyme to the maximal extent. Higher concentrations of CTP result in some inhibition of the mutant enzyme that may be due either to hetertropic effects at the regulatory site or to competitive binding at the active site. UTP alone or in the presence of CTP has no effect on the mutant enzyme. Kinetic competition experiments indicate that CTP is still able to displace ATP from the regulatory sites of the mutant enzyme. Binding measurements by equilibrium dialysis were used to estimate a lower limit on the dissociation constant for CTP binding to the mutant enzyme (greater than 1 x 10(-3) M). Equilibrium competition binding experiments between ATP and CTP verified that CTP still can bind to the regulatory site of the enzyme. For the mutant enzyme, CTP affinity is reduced approximately 100-fold, while ATP affinity is increased by 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The modified aspartate transcarbamylase (ATCase) encoded by the transducing phage described by Cunin et al. has been purified to homogeneity. In this altered form of enzyme (pAR5-ATCase) the last eight amino acids of the C-terminal end of the regulatory chains are replaced by a sequence of six amino acids coded for by the lambda DNA. This modification has very informative consequences on the allosteric properties of ATCase. pAR5-ATCase lacks the homotropic co-operative interactions between the catalytic sites for aspartate binding and is "frozen" in the R state. In addition, this altered form of enzyme is insensitive to the physiological feedback inhibitor CTP, in spite of the fact that this nucleotide binds normally to the regulatory sites. Conversely, pAR5-ATCase is fully sensitive to the activator ATP. However, this activation is limited to the extent of the previously described "primary effect" as expected from an ATCase form "frozen" in the R state. These results emphasize the importance of the three-dimensional structure of the C-terminal region of the regulatory chains for both homotropic and heterotropic interactions. In addition, they indicate that the primary effects of CTP and ATP involve different features of the regulatory chain-catalytic chain interaction area.  相似文献   

6.
As an alternative method to study the heterotropic mechanism of Escherichia coli aspartate transcarbamoylase, a series of nucleotide analogs were used. These nucleotide analogs have the advantage over site-specific mutagenesis experiments in that interactions between the backbone of the protein and the nucleotide could be evaluated in terms of their importance for function. The ATP analogs purine 5'-triphosphate (PTP), 6-chloropurine 5'-triphosphate (Cl-PTP), 6-mercaptopurine 5'-triphosphate (SH-PTP), 6-methylpurine 5'-triphosphate (Me-PTP), and 1-methyladenosine 5'-triphosphate (Me-ATP) were partially synthesized from their corresponding nucleosides. Kinetic analysis was performed on the wild-type enzyme in the presence of these ATP analogs along with GTP, ITP, and XTP. PTP, Cl-PTP, and SH-PTP each activate the enzyme at subsaturating concentrations of L-aspartate and saturating concentrations of carbamoyl phosphate, but not to the same extent as does ATP. These experiments suggest that the interaction between N6-amino group of ATP and the backbone of the regulatory chain is important for orienting the nucleotide and inducing the displacements of the regulatory chain backbone necessary for initiation of the regulatory response. Me-PTP and Me-ATP also activate the enzyme, but in a more complex fashion, which suggests differential binding at the two sites within each regulatory dimer. The purine nucleotides GTP, ITP, and XTP each inhibit the enzyme but to a lesser extent than CTP. The influence of deoxy and dideoxynucleotides on the activity of the enzyme was also investigated. These experiments suggest that the 2' and 3' ribose hydroxyl groups are not of significant importance for binding and orientation of the nucleotide in the regulatory binding site. 2'-dCTP inhibits the enzyme to the same extent as CTP, indicating that the interactions of the enzyme to the O2-carbonyl of CTP are critical for CTP binding, inhibition, and the ability of the enzyme to discriminate between ATP and CTP. Examination of the electrostatic surface potential of the nucleotides and the regulatory chain suggest that the complimentary electrostatic interactions between the nucleotides and the regulatory chain are important for binding and orientation of the nucleotide necessary to induce the local conformational changes that propagate the heterotropic effect.  相似文献   

7.
We have used site-specific amino acid substitutions to investigate the linkage between the allosteric properties of arpartate transcarbamoylase and the global conformational transition exhibited by the enzyme upon binding active-site ligands. Two mutationally altered enzymes in which an amino acid substitution had been introduced at a single position in the catalytic polypeptide chain (Lys-164----Glu and Glu-239----Lys) and a third species harboring both of these substitutions (Lys-164:Glu-239----Glu:Lys) were constructed. Sedimentation velocity difference studies were performed in order to assess the effects of the amino acid substitutions on the quaternary structure of the holoenzyme in the absence and presence of various active-site ligands, including the bisubstrate analog, N-(phosphonacetyl)-L-aspartate (PALA), which has been shown previously to promote the allosteric transition. In the absence of ligand, two of the mutationally altered enzymes, Lys-164----Glu and Lys-164:Glu-239----Glu:Lys, existed in the R conformation, isomorphous with that of the PALA-liganded wild-type holoenzyme. These enzymes exhibited no conformational change upon binding PALA. The unliganded Glu-239----Lys enzyme had an average sedimentation coefficient intermediate between that of the unliganded and PALA-liganded states of the wild-type enzyme which could be accounted for in terms of a mixture of T- and R-state molecules. This mutant enzyme was converted to the fully swollen conformation upon binding PALA, phosphate or carbamoyl phosphate. The allosteric properties of the mutationally altered species were investigated by PALA-binding studies and by steady-state enzyme kinetics. In each case, the mutationally altered enzymes were devoid of both homotropic and heterotropic effects, supporting the premise that the allosteric properties of the wild-type enzyme are linked to a ligand-promoted change in quaternary structure.  相似文献   

8.
Aspartate transcarbamoylase from Pseudomonadaceae is a class A enzyme consisting of six copies of a 36-kDa catalytic chain and six copies of a 45-kDa polypeptide of unknown function. The 45-kDa polypeptide is homologous to dihydroorotase but lacks catalytic activity. Pseudomonas aeruginosa aspartate transcarbamoylase was overexpressed in Escherichia coli. The homogeneous His-tagged protein isolated in high yield, 30 mg/liter of culture, by affinity chromatography and crystallized. Attempts to dissociate the catalytic and pseudo-dihydroorotase (pDHO) subunits or to express catalytic subunits only were unsuccessful suggesting that the pDHO subunits are required for the proper folding and assembly of the complex. As reported previously, the enzyme was inhibited by micromolar concentrations of all nucleotide triphosphates. In the absence of effectors, the aspartate saturation curves were hyperbolic but became strongly sigmoidal in the presence of low concentrations of nucleotide triphosphates. The inhibition was unusual in that only free ATP, not MgATP, inhibits the enzyme. Moreover, kinetic and binding studies with a fluorescent ATP analog suggested that ATP induces a conformational change that interferes with the binding of carbamoyl phosphate but has little effect once carbamoyl phosphate is bound. The peculiar allosteric properties suggest that the enzyme may be a potential target for novel chemotherapeutic agents designed to combat Pseudomonas infection.  相似文献   

9.
The effector binding site of Escherichia coli aspartate transcarbamoylase, composed of the triphosphate and ribose-base subsites, is located on the regulatory (r) chains of the enzyme. In order to probe the function of amino acid side chains at this nucleotide triphosphate site, site-specific mutagenesis was used to create three mutant versions of the enzyme. On the basis of the three-dimensional structure of the enzyme with CTP bound, three residues were selected. Specifically, Arg-96r was replaced with Gln, and His-20r and Tyr-89r were both replaced with Ala. Analyses of these mutant enzymes indicate that none of these substitutions significantly alter the catalytic properties of the enzyme. However, the mutations at His-20r and Tyr-89r produced altered response to the regulatory nucleotides. For the His-20r----Ala enzyme, the affinities of the enzyme for ATP and CTP are reduced 40-fold and 10-fold, respectively, when compared with the wild-type enzyme. Furthermore, CTP is able to inhibit the His-20r----Ala enzyme 40% more than the wild-type enzyme. In the case of the Tyr-89r----Ala enzyme. ATP can increase the mutant enzyme's activity 181% compared to 157% for the wild-type enzyme, while simultaneously the affinity of this enzyme for ATP decreases about 70%. These results suggest that Tyr-89r does have an indirect role in the discrimination between ATP and CTP. The His-20r----Ala enzyme shows no UTP synergistic inhibition in the presence of CTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Aspartate transcarbamoylase from Escherichia coli is a dodecameric enzyme consisting of two trimeric catalytic subunits and three dimeric regulatory subunits. Asp-100, from one catalytic chain, is involved in stabilizing the C1-C2 interface by means of its interaction with Arg-65 from an adjacent catalytic chain. Replacement of Asp-100 by Ala has been shown previously to result in increases in the maximal specific activity, homotropic cooperativity, and the affinity for aspartate (Baker DP, Kantrowitz ER, 1993, Biochemistry 32:10150-10158). In order to determine whether these properties were due to promotion of domain closure induced by the weakening of the C1-C2 interface, we constructed a double mutant version of aspartate transcarbamoylase in which the Asp-100-->Ala mutation was introduced into the Glu-50-->Ala holoenzyme, a mutant in which domain closure is impaired. The Glu-50/Asp-100-->Ala enzyme is fourfold more active than the Glu-50-->Ala enzyme, and exhibits significant restoration of homotropic cooperativity with respect to aspartate. In addition, the Asp-100-->Ala mutation restores the ability of the Glu-50-->Ala enzyme to be activated by succinate and increases the affinity of the enzyme for the bisubstrate analogue N-(phosphonacetyl)-L-aspartate (PALA). At subsaturating concentrations of aspartate, the Glu-50/Asp-100-->Ala enzyme is activated more by ATP than the Glu-50-->Ala enzyme and is also inhibited more by CTP than either the wild-type or the Glu-50-->Ala enzyme. As opposed to the wild-type enzyme, the Glu-50/Asp-100-->Ala enzyme is activated by ATP and inhibited by CTP at saturating concentrations of aspartate. Structural analysis of the Glu-50/Asp-100-->Ala enzyme by solution X-ray scattering indicates that the double mutant exists in the same T quaternary structure as the wild-type enzyme in the absence of ligands and in the same R quaternary structure in the presence of saturating PALA. However, saturating concentrations of carbamoyl phosphate and succinate only convert a fraction of the Glu-50/Asp-100-->Ala enzyme population to the R quaternary structure, a behavior intermediate between that observed for the Glu-50-->Ala and wild-type enzymes. Solution X-ray scattering was also used to investigate the structural consequences of nucleotide binding to the Glu-50/Asp-100-->Ala enzyme.  相似文献   

11.
The activity and cooperativity of Escherichia coli aspartate transcarbamoylase (ATCase) vary as a function of pH, with a maximum of both parameters at approximately pH 8.3. Here we report the first X-ray structure of unliganded ATCase at pH 8.5, to establish a structural basis for the observed Bohr effect. The overall conformation of the active site at pH 8.5 more closely resembles the active site of the enzyme in the R-state structure than other T-state structures. In the structure of the enzyme at pH 8.5 the 80's loop is closer to its position in R-state structures. A unique electropositive channel, comprised of residues from the 50's region, is observed in this structure, with Arg54 positioned in the center of the channel. The planar angle between the carbamoyl phosphate and aspartate domains of the catalytic chain is more open at pH 8.5 than in ATCase structures determined at lower pH values. The structure of the enzyme at pH 8.5 also exhibits lengthening of a number of interactions in the interface between the catalytic and regulatory chains, whereas a number of interactions between the two catalytic trimers are shortened. These alterations in the interface between the upper and lower trimers may directly shift the allosteric equilibrium and thus the cooperativity of the enzyme. Alterations in the electropositive environment of the active site and alterations in the position of the catalytic chain domains may be responsible for the enhanced activity of the enzyme at pH 8.5.  相似文献   

12.
Chromatography of aspartate transcarbamoylase from Escherichia coli on agarose-immobilized dyes and alkyl-agaroses of differing carbon length were investigated. The bacterial aspartate transcarbamoylase was bound by Procoin red HE3B-agarose and Cibacron blue F3GA-agarose nearly completely under the conditions chosen relative to other agarose-coupled dyes. The aspartate transcarbamoylase holoenzyme was eluted from the Procion red HE3B-agarose slightly later than from the Cibacron blue F3GA-agarose during salt gradient elution. The catalytic trimer of the enzyme as well as its regulatory dimer were eluted by a lower salt concentration from both dye-agarose gels than the concentration required to elute the holoenzyme. The interaction of the catalytic trimer with the Procion red HE3B-agarose and Cibacron blue F3GA-agarose gels may be a determinant in the holoenzyme being retained on these resins. Of those alkyl-agaroses tested, the ethyl-, propyl- and hexyl-agarose gels bound the majority of aspartate transcarbamoylase activity. Chromatography of aspartate transcarbamoylase on ethyl-agarose found it to be eluted by a low salt concentration. A purification scheme for relatively small amounts of aspartate transcarbamoylase utilizing Procion red HE3B-agarose and ethyl-agarose is presented. This purification scheme is particularly useful for mutant versions of aspartate transcarbamoylase which cannot be purified by literature procedures.  相似文献   

13.
W Xu  E R Kantrowitz 《Biochemistry》1991,30(9):2535-2542
Carbamoyl phosphate is held in the active site of Escherichia coli aspartate transcarbamoylase by a variety of interactions with specific side chains of the enzyme. In particular, oxygens of the phosphate of carbamoyl phosphate interact with Ser-52, Thr-53 (backbone), Arg-54, Thr-55, and Arg-105 from one catalytic chain, as well as Ser-80 and Lys-84 from an adjacent chain in the same catalytic subunit. In order to define the role of Ser-52 and Ser-80 in the catalytic mechanism, two mutant versions of the enzyme were created with Ser-52 or Ser-80 replaced by alanine. The Ser-52----Ala holoenzyme exhibits a 670-fold reduction in maximal observed specific activity, and a loss of both aspartate and carbamoyl phosphate cooperativity. This mutation also causes 23-fold and 5.6-fold increases in the carbamoyl phosphate and aspartate concentrations required for half the maximal observed specific activity, respectively. Circular dichroism spectroscopy indicates that saturating carbamoyl phosphate does not induce the same conformational change in the Ser-52----Ala holoenzyme as it does for the wild-type holoenzyme. The kinetic properties of the Ser-52----Ala catalytic subunit are altered to a lesser extent than the mutant holoenzyme. The maximal observed specific activity is reduced by 89-fold, and the carbamoyl phosphate concentration at half the maximal observed velocity increases by 53-fold while the aspartate concentration at half the maximal observed velocity increases 6-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The importance of the interdomain bridging interactions observed only in the R-state structure of Escherichia coli aspartate transcarbamylase between Glu-50 of the carbamoyl phosphate domain with both Arg-167 and Arg-234 of the aspartate domain has been investigated by using site-specific mutagenesis. Two mutant versions of aspartate transcarbamylase were constructed, one with alanine at position 50 (Glu-50----Ala) and the other with aspartic acid at position 50 (Glu-50----Asp). The alanine substitution totally prevents the interdomain bridging interactions, while the aspartic acid substitution was expected to weaken these interactions. The Glu-50----Ala holoenzyme exhibits a 15-fold loss of activity, no substrate cooperativity, and a more than 6-fold increase in the aspartate concentration at half the maximal observed specific activity. The Glu-50----Asp holoenzyme exhibits a less than 3-fold loss of activity, reduced cooperativity for substrates, and a 2-fold increase in the aspartate concentration at half the maximal observed specific activity. Although the Glu-50----Ala enzyme exhibits no homotropic cooperativity, it is activated by N-(phosphonoacetyl)-L-aspartate (PALA). As opposed to the wild-type enzyme, the Glu-50----Ala enzyme is activated by PALA at saturating concentrations of aspartate. At subsaturating concentrations of aspartate, both mutant enzymes are activated by ATP, but are inhibited less by CTP than is the wild-type enzyme. At saturating concentrations of aspartate, the Glu-50----Ala enzyme is activated by ATP and inhibited by CTP to an even greater extent than at subsaturating concentrations of aspartate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
Two active mutants of aspartate transcarbamoylase from Escherichia coli have been purified from strains which produce large quantities of enzyme. Each enzyme was isolated from a different spontaneous revertant of a pyrimidine auxotrophic strain produced by mutagenesis with nitrogen mustard. Both enzymes exhibit allosteric properties with one having significantly less and the other more cooperativity than wild-type enzyme. Isolated catalytic subunits had different values of Km and Vmax. Studies on hybrids constructed from mutant catalytic and wild-type regulatory subunits (and vice versa) indicate that catalytic chains encoded by pyrB and not the regulatory chains encoded by pyrI were affected by the mutations. Differential scanning calorimetry experiments support these conclusions. Both mutant enzymes undergo ligand-promoted conformational changes analogous to those exhibited by wild-type enzyme: a 3% decrease in the sedimentation coefficient and a 5-fold increase in the reactivity of the sulfhydryl groups of the regulatory chains. Interactions between catalytic and regulatory chains in the mutants are weaker than those in the wild-type enzyme. The gross conformational changes of the mutants upon adding the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate, in the presence of the substrate, carbamoylphosphate, and the activator, ATP, correlate with differences in cooperativity. The mutant with lower cooperativity is more readily converted from the low-affinity, compact, T-state to the high-affinity, swollen, R-state than is wild-type enzyme; this conversion for the more cooperative enzyme is energetically less favorable.  相似文献   

18.
The role of conformational changes in the allosteric mechanism of aspartate transcarbamoylase from Escherichia coli was studied by reacting the isolated catalytic subunit with the bifunctional reagent tartryl diazide. Two derivatives differing moderately in substrate affinity were obtained depending on whether the reaction was conducted in the presence or absence of the substrate analogue succinate and carbamoyl phosphate. The modification was not accompanied by aggregation or dissociation. The modified catalytic subunits retained the ability to reassociate with unmodified regulatory subunits and produced hybrids similar in size to the native enzyme. These hybrids were appreciably sensitive to the allosteric effectors ATP and CTP but unlike native enzyme showed no cooperativity in substrate binding. The Michaelis constants of these hybrids for aspartate were intermediate between that of the isolated catalytic subunit and that of the relaxed state. Activation by ATP was caused by a reduction in Km to the value characteristic of the relaxed state whereas CTP inhibited by lowering the Vmax. The properties of the hybrids are strikingly similar to the modified enzyme obtained by Kerbiriou and Hervé from cells grown in the presence of 2-thiouracil. However, the crucial modifications are found in the regulatory subunits of the enzyme studied by these authors whereas they are located in the catalytic subunits of the hybrids reported here. Our results suggest that interactions between the catalytic and regulatory subunits have considerable effects on the state of the substrate binding sites in the native enzyme.  相似文献   

19.
19F nuclear magnetic resonance (NMR) spectroscopy was used to study "communication" between the catalytic and regulatory subunits in aspartate transcarbamoylase of Escherichia coli. Hybrid enzymes composed of fluorotyrosine-labeled regulatory subunits and native catalytic subunits or of native regulatory subunits and fluorotyrosine-labeled catalytic subunits were constructed and shown to have the allosteric kinetic properties of native enzyme. These hybrids exhibited the ligand-promoted "global" conformational changes characteristic of native aspartate transcarbamoylase and alterations in the NMR spectrum when ligands bind to the active site. The NMR difference spectrum caused by the binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to the hybrid containing 19F-labeled regulatory chains consisted of two troughs and a peak, suggesting that two tyrosines in the regulatory polypeptide chains were affected by the binding of ligand to the catalytic subunits. The increase in magnitude of the peak appeared to depend directly on the fractional saturation of the active sites. A peak with two distinct shoulders was observed in the 19F NMR spectrum of the hybrid containing fluorotyrosine in the catalytic chains when it was saturated with the ligand, whereas the spectrum for the unliganded enzyme consisted of a single peak. The NMR difference spectrum showed that the bisubstrate ligand perturbed at least two resonances, and these changes appeared to be tightly linked to the binding of the ligand.  相似文献   

20.
Two hybrid versions of Escherichia coli aspartate transcarbamoylase were studied to determine the influence of domain closure on the homotropic and heterotropic properties of the enzyme. Each hybrid holoenzyme had one wild-type and one inactive catalytic subunit. In the first case the inactive catalytic subunit had Arg-54 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 17,000-fold reduction in activity, no loss in substrate affinity, and an R state structurally identical to that of the wild-type enzyme. In the second case, the inactive catalytic subunit had Arg-105 replaced by alanine. The holoenzyme with this mutation in all six catalytic chains exhibits a 1,100-fold reduction in activity, substantial loss in substrate affinity, and loss of the ability to be converted to the R state. Thus, the R54A substitution results in a holoenzyme that can undergo closure of the catalytic chain domains to form the high activity, high affinity active site and to undergo the allosteric transition, whereas the R105A substitution results in a holoenzyme that can neither undergo domain closure nor the allosteric transition. The hybrid holoenzyme with one wild-type and one R54A catalytic subunit exhibited the same maximal velocity per active site as the wild-type holoenzyme, reduced cooperativity, and normal heterotropic interactions. The hybrid with one wild-type and one R105A catalytic subunit exhibited significantly reduced maximal velocity per active site as compared with the wild-type holoenzyme, reduced cooperativity, and substantially reduced heterotropic interactions. Small angle x-ray scattered was used to verify that the R105A-containing hybrid could attain an R state structure. These results indicate the global nature of the conformational changes associated with the allosteric transition in the enzyme. If one catalytic subunit cannot undergo domain closure to create the active sites, then the entire molecule cannot attain the high activity, high activity R state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号