首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the ciliate Tetrahymena thermophila, lysosome-related organelles called mucocysts accumulate at the cell periphery where they secrete their contents in response to extracellular events, a phenomenon called regulated exocytosis. The molecular bases underlying regulated exocytosis have been extensively described in animals but it is not clear whether similar mechanisms exist in ciliates or their sister lineage, the Apicomplexan parasites, which together belong to the ecologically and medically important superphylum Alveolata. Beginning with a T. thermophila mutant in mucocyst exocytosis, we used a forward genetic approach to uncover MDL1 (Mucocyst Discharge with a LamG domain), a novel gene that is essential for regulated exocytosis of mucocysts. Mdl1p is a 40 kDa membrane glycoprotein that localizes to mucocysts, and specifically to a tip domain that contacts the plasma membrane when the mucocyst is docked. This sub-localization of Mdl1p, which occurs prior to docking, underscores a functional asymmetry in mucocysts that is strikingly similar to that of highly polarized secretory organelles in other Alveolates. A mis-sense mutation in the LamG domain results in mucocysts that dock but only undergo inefficient exocytosis. In contrast, complete knockout of MDL1 largely prevents mucocyst docking itself. Mdl1p is physically associated with 9 other proteins, all of them novel and largely restricted to Alveolates, and sedimentation analysis supports the idea that they form a large complex. Analysis of three other members of this putative complex, called MDD (for Mucocyst Docking and Discharge), shows that they also localize to mucocysts. Negative staining of purified MDD complexes revealed distinct particles with a central channel. Our results uncover a novel macromolecular complex whose subunits are conserved within alveolates but not in other lineages, that is essential for regulated exocytosis in T. thermophila.  相似文献   

2.
B. H. Satir  H. Zhao 《Protoplasma》1999,206(4):228-233
Summary The phosphoglycoprotein parafusin is a member of the phosphoglucomutase superfamily and has been shown, both via biochemical and localization studies, to be associated with the Ca2+-dependent regulated exocytosis process inParamecium tetraurelia. Stimulation of exocytosis in this cell leads to a Ca2+-dependent glucosylation of parafusin accompanied by its dissociation from the secretory vesicles and from cell membrane docking sites. These events are blocked in the presence of extracellular Mg2+ in wild-type cells and in either Ca2+ or Mg2+ in a temperature-sensitive mutant, nd9, stimulated at the nonpermissive temperature. Furthermore, laser scanning confocal localization studies with antibodies to parafusin whole protein versus antibody made to a specific peptide (insertion 2) show different localization patterns. While insertion-2 antibodies only label the organelles previously shown to have parafusin associated with them, i.e., cell membrane fusion (docking) sites and secretory vesicles, antibodies to whole protein outline in addition the alveolar sacs (subsurface cisterns) which are Ca2+ storage compartments in this cell. This may indicate tht other members of the phosphoglucomutase superfamily which interact specifically with this compartment are present inP. tetraurelia.  相似文献   

3.
Secretory granules, such as neuronal dense core vesicles, are specialized for storing cargo at high concentration and releasing it via regulated exocytosis in response to extracellular stimuli. Here, we used expression profiling to identify new components of the machinery for sorting proteins into mucocysts, secretory granule-like vesicles in the ciliate Tetrahymena thermophila. We show that assembly of mucocysts depends on proteins classically associated with lysosome biogenesis. In particular, the delivery of nonaggregated, but not aggregated, cargo proteins requires classical receptors of the sortilin/VPS10 family, which indicates that dual mechanisms are involved in sorting to this secretory compartment. In addition, sortilins are required for delivery of a key protease involved in T. thermophila mucocyst maturation. Our results suggest potential similarities in the formation of regulated secretory organelles between even very distantly related eukaryotes.  相似文献   

4.
Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulus-dependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules.  相似文献   

5.
The vesicle fusion reaction in regulated exocytosis requires the concerted action of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core fusion engine and a group of SNARE-binding regulatory factors. The regulatory mechanisms of vesicle fusion remain poorly understood in most exocytic pathways. Here, we reconstituted the SNARE-dependent vesicle fusion reaction of GLUT4 exocytosis in vitro using purified components. Using this defined fusion system, we discovered that the regulatory factor synip binds to GLUT4 exocytic SNAREs and inhibits the docking, lipid mixing, and content mixing of the fusion reaction. Synip arrests fusion by binding the target membrane SNARE (t-SNARE) complex and preventing the initiation of ternary SNARE complex assembly. Although synip also interacts with the syntaxin-4 monomer, it does not inhibit the pairing of syntaxin-4 with SNAP-23. Interestingly, synip selectively arrests the fusion reactions reconstituted with its cognate SNAREs, suggesting that the defined system recapitulates the biological functions of the vesicle fusion proteins. We further showed that the inhibitory function of synip is dominant over the stimulatory activity of Sec1/Munc18 proteins. Importantly, the inhibitory function of synip is distinct from how other fusion inhibitors arrest SNARE-dependent membrane fusion and therefore likely represents a novel regulatory mechanism of vesicle fusion.  相似文献   

6.
Alveolins are a recently described class of proteins common to all members of the superphylum Alveolata that are characterized by conserved charged repeat motifs (CRMs) but whose exact function remains unknown. We have analyzed the smaller of the two alveolins of Tetrahymena thermophila, TtALV2. The protein localizes to dispersed, broken patches arranged between the rows of the longitudinal microtubules. Macronuclear knockdown of Ttalv2 leads to multinuclear cells with no apparent cell polarity and randomly occurring cell protrusions, either by interrupting pellicle integrity or by disturbing cytokinesis. Correct association of TtALV2 with the alveoli or the pellicle is complex and depends on both the termini as well as the charged repeat motifs of the protein. Proteins containing similar CRMs are a dominant part of the ciliate membrane cytoskeleton, suggesting that these motifs may play a more general role in mediating membrane attachment and/or cytoskeletal association. To better understand their integration into the cytoskeleton, we localized a range of CRM-based fusion proteins, which suggested there is an inherent tendency for proteins with CRMs to be located in the peripheral cytoskeleton, some nucleating as filaments at the basal bodies. Even a synthetic protein, mimicking the charge and repeat pattern of these proteins, directed a reporter protein to a variety of peripheral cytoskeletal structures in Tetrahymena. These motifs might provide a blueprint for membrane and cytoskeleton affiliation in the complex pellicles of Alveolata.  相似文献   

7.
Several glycolytic enzymes and their isoforms have been found to be important in cell signaling unrelated to glycolysis. The involvement of parafusin (PFUS), a member of the phosphoglucomutase (PGM) superfamily with no phosphoglucomutase activity, in Ca(2+)-dependent exocytosis has been controversial. This protein was first described in Paramecium tetraurelia, but is widely found. Earlier work showed that parafusin is a secretory vesicle scaffold component with unusual post-translational modifications (cyclic phosphorylation and phosphoglucosylation) coupled to stages in the exocytic process. Using RNAi, we demonstrate that parafusin synthesis can be reversibly blocked, with minor or no effect on other PGM isoforms. PFUS knockdown produces an inhibition of dense core secretory vesicle (DCSV) synthesis leading to an exo(-) phenotype. Although cell growth is unaffected, vesicle content is not packaged properly and no new DCSVs are formed. We conclude that PFUS and its orthologs are necessary for proper scaffold maturation. Because of this association, parafusin is an important signaling component for regulatory control of the secretory pathway.  相似文献   

8.
In Tetrahymena, besides apparent cell polarity generated by specialized cortical structures, several proteins display a specific asymmetric distribution suggesting their involvement in the generation and the maintenance of cell polarization. One of these proteins, a membrane skeleton protein called fenestrin, forms an antero-posterior gradient, and is accepted as a marker of cell polarity during different cellular processes, such as cell division or oral replacement. In conjugating cells, fenestrin forms an intracytoplasmic net which participates in pronuclear exchange. The function of fenestrin is still unknown. To better understand the role of fenestrin we characterized this protein in an amicronuclear Tetrahymena pyriformis. We show that in this ciliate not only does fenestrin localization change in a cell division-dependent manner, but its mRNA and protein level is also cell cycle-regulated. We determine that the two available anti-fenestrin antibodies, 3A7 and 9A7, recognize different pools of fenestrin isoforms, and that 9A7 is the more general. In addition, our results indicate that fenestrin is a phosphoprotein. We also show that the level of fenestrin in the amicronuclear T. pyriformis and the amicronuclear BI3840 strain of T. thermophila is several times lower than in micronuclear T. thermophila.  相似文献   

9.
An intron in a ribosomal protein gene from Tetrahymena   总被引:10,自引:0,他引:10       下载免费PDF全文
We have cloned and sequenced a single copy gene encoding a ribosomal protein from the ciliate Tetrahymena thermophila. The gene product was identified as ribosomal protein S25 by comparison of the migration in two-dimensional polyacrylamide gels of the protein synthesized by translation in vitro of hybrid-selected mRNA and authentic ribosomal proteins. The proteins show strong homology to ribosomal protein S12 from Escherichia coli. The coding region of the gene is interrupted by a 979-bp intron 68 bp downstream of the translation start. This is the first intron in a protein encoding gene of a ciliate to be described at the nucleotide sequence level. The intron obeys the GT/AG rule for splice junctions of nuclear mRNA introns from higher eukaryotes but lacks the pyrimidine stretch usually found in the immediate vicinity of the 3' splice junction. The structure of the intron and the fact that it is found together with the well described self-splicing rRNA intron is discussed in relation to the evolution of RNA splicing.  相似文献   

10.
The studies reported here will summarize the major events taking place during the synthesis, intracellular transport and discharge of secretory proteins from the pancreatic acinar cell. We will summarize the work that led to the definition of the regulated secretory pathway in the acinar cell followed by an update of the major steps in the pathway to incorporate new information on vesicular transport that has been gathered over the past 10 years from a number of laboratories. These studies arise from an amazing convergence of information derived from studies on the simpler eukaryote, S. cerevisiae, from biochemical analysis of neurotransmitter release, and from in vitro membrane fusion systems that have allowed for the dissection of the proteins involved in membrane recognition and fusion. Taken together, these studies have shown that the major proteins involved in membrane targeting and fusion, and the accessory proteins that control these events, are highly conserved over vast periods of evolutionary time. Thus, information derived from each of these systems and approaches can be transferred directly to regulated exocytosis in the pancreatic acinar cell — a system that has superimposed on it the complexities of organization into a polarized epithelium and control from the extracellular milieu via neurohormones. The ensuing hypothesis that integrates this body of information is termed the SNARE hypothesis. According to this hypothesis, the core complex of NSF (N-ethylmaleimide sensitive fusion protein) and SNAPs (soluble NSF attachment proteins) pair with their cognate receptors, SNAREs, present on the vesicles (v-SNARE) and the target membrane (t-SNARE) to form a complex that can lead to specific docking and fusion of the vesicles with their target membranes. This process is believed to be controlled by a variety of accessory proteins including synaptotagmin, a Ca2+ binding clamp for exocytosis and members of the rab family of low molecular weight GTP-binding proteins. Several of these proteins have been found by us to be present in the pancreatic acinar cell and are likely involved in similar processes that have been worked out in simpler systems. For example, we have shown that rab3D is uniquely associated with the cytosolic side of zymogen granule membranes as an integral membrane protein and that peptides from the effector domain of the rab proteins are able to induce secretion from permeabilized acinar cells, suggesting a role for this process in regulated exocytosis. These types of approaches are being used to define the localizaiton and function of members of the SNARE family of proteins and of proteins that control formation of the SNARE complex with a particular emphasis on their role in hormonally-elicited secretion. In our presentations, we will also discuss the acquisition of stimulus secretion coupling during the perinatal period in the developing rat pancreas since this system provides the possibility of defining, in a system that does not require exogenous transfection, the sequential expression of factors involved in membrane targeting and fusion. For example, during secretogenesis, rab3D is initially cytosolic at a time when the machinery of exocytosis is present but not functional, and only becomes associated with zymogen granule membranes after birth when stimulus-secretion coupling is acquired.  相似文献   

11.
Lipid rafts and the regulation of exocytosis   总被引:13,自引:0,他引:13  
Exocytosis is the process whereby intracellular fluid-filled vesicles fuse with the plasma membrane, incorporating vesicle proteins and lipids into the plasma membrane and releasing vesicle contents into the extracellular milieu. Exocytosis can occur constitutively or can be tightly regulated, for example, neurotransmitter release from nerve endings. The last two decades have witnessed the identification of a vast array of proteins and protein complexes essential for exocytosis. SNARE proteins fill the spotlight as probable mediators of membrane fusion, whereas proteins such as munc18/nsec1, NSF and SNAPs function as essential SNARE regulators. A central question that remains unanswered is how exocytic proteins and protein complexes are spatially regulated. Recent studies suggest that lipid rafts, cholesterol and sphingolipid-rich microdomains, enriched in the plasma membrane, play an essential role in regulated exocytosis pathways. The association of SNAREs with lipid rafts acts to concentrate these proteins at defined sites of the plasma membrane. Furthermore, cholesterol depletion inhibits regulated exocytosis, suggesting that lipid raft domains play a key role in the regulation of exocytosis. This review examines the role of lipid rafts in regulated exocytosis, from a passive role as spatial coordinator of exocytic proteins to a direct role in the membrane fusion reaction.  相似文献   

12.
The pairing of cognate v- and t-SNAREs between two opposing lipid bilayers drives spontaneous membrane fusion and confers specificity to intracellular membrane trafficking. These fusion events are regulated by a cascade of protein-protein interactions that locally control SNARE activity and complex assembly, determining when and where fusion occurs with high efficiency in vivo. This basic regulation occurs at all transport steps and is mediated by conserved protein families such as Rab proteins and their effectors and Sec1/unc18 proteins. Regulated exocytosis employs auxiliary components that couple the signal (which triggers exocytosis) to the fusion machinery. At the neuronal synapse, munc13 as well as munc18 control SNARE complex assembly. Synaptotagmin and complexin ensure fast synchronous calcium-evoked neurotransmitter release.  相似文献   

13.
SNARE proteins catalyze many forms of biological membrane fusion, including Ca2+-triggered exocytosis. Although fusion mediated by SNAREs generally involves proteins anchored to each fusing membrane by a transmembrane domain (TMD), the role of TMDs remains unclear, and previous studies diverge on whether SNAREs can drive fusion without a TMD. This issue is important because it relates to the question of the structure and composition of the initial fusion pore, as well as the question of whether SNAREs mediate fusion solely by creating close proximity between two membranes versus a more active role in transmitting force to the membrane to deform and reorganize lipid bilayer structure. To test the role of membrane attachment, we generated four variants of the synaptic v-SNARE synaptobrevin-2 (syb2) anchored to the membrane by lipid instead of protein. These constructs were tested for functional efficacy in three different systems as follows: Ca2+-triggered dense core vesicle exocytosis, spontaneous synaptic vesicle exocytosis, and Ca2+-synaptotagmin-enhanced SNARE-mediated liposome fusion. Lipid-anchoring motifs harboring one or two lipid acylation sites completely failed to support fusion in any of these assays. Only the lipid-anchoring motif from cysteine string protein-α, which harbors many lipid acylation sites, provided support for fusion but at levels well below that achieved with wild type syb2. Thus, lipid-anchored syb2 provides little or no support for exocytosis, and anchoring syb2 to a membrane by a TMD greatly improves its function. The low activity seen with syb2-cysteine string protein-α may reflect a slower alternative mode of SNARE-mediated membrane fusion.  相似文献   

14.
Telomere addition by telomerase requires an internal templating sequence located in the RNA subunit of telomerase. The correct boundary definition of this template sequence is essential for the proper addition of the nucleotide repeats. Incorporation of incorrect telomeric repeats onto the ends of chromosomes has been shown to induce chromosomal instability in ciliate, yeast and human cells. A 5′ template boundary defining element (TBE) has been identified in human, yeast and ciliate telomerase RNAs. Here, we report the solution structure of the TBE element (helix II) from Tetrahymena thermophila telomerase RNA. Our results indicate that helix II and its capping pentaloop form a well-defined structure including unpaired, stacked adenine nucleotides in the stem and an unusual syn adenine nucleotide in the loop. A comparison of the T.thermophila helix II pentaloop with a pentaloop of the same sequence found in the 23S rRNA of the Haloarcula marismortui ribosome suggests possible RNA and/or protein interactions for the helix II loop within the Tetrahymena telomerase holoenzyme.  相似文献   

15.
There are a diversity of interpretations concerning the possible roles of phospholipase D and its biologically active product phosphatidic acid in the late, Ca2+-triggered steps of regulated exocytosis. To quantitatively address functional and molecular aspects of the involvement of phospholipase D-derived phosphatidic acid in regulated exocytosis, we used an array of phospholipase D inhibitors for ex vivo and in vitro treatments of sea urchin eggs and isolated cortices and cortical vesicles, respectively, to study late steps of exocytosis, including docking/priming and fusion. The experiments with fluorescent phosphatidylcholine reveal a low level of phospholipase D activity associated with cortical vesicles but a significantly higher activity on the plasma membrane. The effects of phospholipase D activity and its product phosphatidic acid on the Ca2+ sensitivity and rate of fusion correlate with modulatory upstream roles in docking and priming rather than to direct effects on fusion per se.  相似文献   

16.
17.
Although it is well established that exocytosis of neurotransmitters and hormones is highly regulated by numerous secretory proteins, such as SNARE proteins, there is an increasing appreciation of the importance of the chemophysical properties and organization of membrane lipids to various aspects of the exocytotic program. Based on amperometric recordings by carbon fiber microelectrodes, we show that deprivation of membrane cholesterol by methyl-β-cyclodextrin not only inhibited the extent of membrane depolarization-induced exocytosis, it also adversely affected the kinetics and quantal size of vesicle fusion in neuroendocrine PC12 cells. In addition, total internal fluorescence microscopy studies revealed that cholesterol depletion impaired vesicle docking and trafficking, which are believed to correlate with the dynamics of exocytosis. Furthermore, we found that free cholesterol is able to directly trigger vesicle fusion, albeit with less potency and slower kinetics as compared to membrane depolarization stimulation. These results underscore the versatile roles of cholesterol in facilitating exocytosis.  相似文献   

18.
A puromycin-N-acetyltransferase gene (pac) is widely used as a selection marker for eukaryotic gene manipulation. However, it has never been utilized for molecular studies in the ciliate Tetrahymena thermophila, in spite of the limited number of selection markers available for this organism. To utilize pac as a maker gene for T. thermophila, the nucleotide sequence of the pac gene was altered to accord with the most preferred codon-usage in T. thermophila. This codon-optimized pac gene expressed in T. thermophila conferred a resistance to transformed cells against 2000 μg/ml of puromycin dihydrochloride, whereas the growth of wild-type cells was completely inhibited by 200 μg/ml. Furthermore, an expression cassette constructed with the codon-optimized pac and an MTT1 promoter was effectively utilized for experiments to tag endogenous proteins of interest by fusing the cassette into the target gene locus. These results indicate that pac can be used as a selection marker in molecular studies of T. thermophila.  相似文献   

19.
Synaptotagmin is considered a calcium-dependent trigger for regulated exocytosis. We examined the role of synaptotagmin VII (Syt VII) in the calcium-dependent exocytosis of individual lysosomes in wild-type (WT) and Syt VII knockout (KO) mouse embryonic fibroblasts (MEFs) using total internal reflection fluorescence microscopy. In WT MEFs, most lysosomes only partially released their contents, their membrane proteins did not diffuse into the plasma membrane, and inner diameters of their fusion pores were smaller than 30 nm. In Syt VII KO MEFs, not only was lysosomal exocytosis triggered by calcium, but all of these restrictions on fusion were also removed. These observations indicate that Syt VII does not function as the calcium-dependent trigger for lysosomal exocytosis. Instead, it restricts the kinetics and extent of calcium-dependent lysosomal fusion.  相似文献   

20.
Many of the proteins that function in regulated exocytosis have now been identified. Several proteins form part of a conserved core machinery that acts in many intracellular vesicular fusion steps and their essential roles confirmed by molecular genetic analysis. In addition, studies with adrenal chromaffin and PC12 cells have demonstrated the function of various proteins in regulated exocytosis and have permitted dissection of the stages of exocytosis in which they act. N-Ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAPs) are key proteins in exocytosis. Examination of their function has indicated that they have a predocking role most likely as molecular chaperones to prepare the docking/fusion machinery. The exact site and time of action in exocytosis of many of the other identified proteins are unknown. A major emphasis for the future will be analysis of the molecular physiology of regulated exocytosis to permit the assignment of functions to identified proteins in particular stages of the regulated exocytotic pathway. BioEssays 20 :328-335, 1998.© 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号