首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leaf regeneration via direct induction of adventitious shoots obtained from an endangered medicinal plant, Curculigo orchioides Gaertn. by pretreating with thidiazuron. C. orchioides is an endangered medicinal herb belonging to the family Hypoxidaceae. Direct inoculation of leaf pieces on MS medium supplemented with various concentrations of BAP (2–8 μM) or TDZ (2–8 μM) alone or in combination with NAA (0.5 and 1.0 μM) produced low shoot induction both in terms of % response and number of shoots per explant. Hence, leaf explants were pretreated with 15, 25 or 50 μM thidiazuron (TDZ), for 6, 24 or 48 h with the aim of improving shoot regeneration from cultured explants. After pretreatment, explants were transferred to an agar solidified MS medium that was supplemented with BAP (4 μM), TDZ (6 μM), BAP (4 μM) + NAA (1.0 μM), TDZ (6 μM) + NAA (0.5 μM). Control explants were incubated directly on the medium without any pretreatment. The pretreatment of explants with 15 μM TDZ for 24 h significantly promoted the formation of adventitious shoots and the maximum response was observed on MS medium supplemented with 6 μM TDZ. In this medium, 96 % cultures responded with an average number of 16.2 adventitious shoots per explant. The percentage of leaf explants producing shoots and the average number of shoots per explant were significantly improved when TDZ pretreated leaves were cultured onto MS medium supplemented with BAP or TDZ alone or in combination with NAA. The rooted plantlets were successfully transplanted to soil with 90% success. The present investigation indicated the stimulatory role of TDZ pretreatment in regulating shoot regeneration from leaf explants of C. orchioides.  相似文献   

2.
Summary An efficient and simple plant regeneration system via organogenesis from leaf segments of persimmon (Diospyros kaki Thunb.) cultivars ‘Fuyu’ and ‘Nishimurawase’ has been developed. The regeneration capacity was influenced by the culture vessels, gelling agents, plant growth regulators, and light conditions. Leaf explants taken from in vitro shoots were cultured on a modified Murashige and Skoog medium (MS1/2N), for 16 wk without transfer to fresh medium. Adventious shoots appeared after 4 and 8 wk in culture of ‘Nishimurawase’ and ‘Fuyu’ tissues, respectively. The culture of leaf explants in Erlenmeyer flasks with medium containing 4 g l−1 agar enhanced shoot formation in comparison to media with increased agar concentrations. Optimal shoot regeneration was obtained with 5 mg l−1 (22.8 μM) zeatin and 0.1 mg l−1 (0.05 μM) indole-3-butyric acid (IBA) for ‘Nishimurawase’, and 10 mg l−1 (45.6 μM) zeatin and 0.1 mg l−1 (0.05 μM) IBA for ‘Fuyn’. Shoot regeneration frequencies in both cultivars were 100%, and shoot numbers per explant reached up to 9.2 for ‘Nishimurawase’ and 2.2 for ‘Fuyu’. Dark incubation during the first 4–5 wk was the most effective condition to successfully influence shoot regeneration in both cultivars. While dark incubation was essential for adventitious shoot formation by ‘Fuyu’, it was only slightly beneficial to ‘Nishimurawase’. More than 80% of the regenerated shoots rooted within 4 wk on hormone-free MS1/2N demium after having been dipped for 30 s in 250 mg l−1 (1.1. mM) IBA solution.  相似文献   

3.
A complete protocol for adventitious shoot regeneration was developed from the leaves of peach rootstock ‘Nemaguard’(Prunus persica × P. davidiana) grown in vitro. Shoot explants were cultured in vitro in Murashige and Skoog medium supplemented with 3.55 μM 6-benzyladenine and 7.38 μM indole-3-butyric acid (IBA). Non-expanded leaves along with their petioles from 3-week-old in vitro-grown shoots were used as explants. Regeneration percentage was influenced by plant growth regulators, basal medium, explant type, dark period, and gelling agents. Optimal regeneration was observed with leaf explants wounded by transverse cuts twice along the midrib and first incubated with abaxial surfaces facing upward in the dark for 3 weeks, and then transferred to the light and cultured with the adaxial side in contact with regeneration medium, as seen on 1/2 MS, woody plant medium or Schenk and Hildebrandt medium supplemented with 9.08 μM thidiazuron, 0.54 μM IBA and 0.25% agar. This produced the highest regeneration percentage at 71.7% and a mean of 5.74 ± 3.24 shoots on 1/2 MS medium. Adventitious shoots were rooted (98.3–100%) and rooted plantlets survived after acclimatization to the greenhouse.  相似文献   

4.
Several factors affecting the frequency of leaf regeneration of Ziziphus jujuba ‘Huizao’ were investigated in this study, including basal medium, plant growth regulators, leaf maturity, explant orientation, and additive chemicals. The results showed that the highest shoot regeneration frequency (82.25%) was obtained on woody plant medium supplemented with 2.27 μM thidiazuron, 1.07 μM α-naphthalene-acetic acid (NAA) and 2.94 μM silver nitrate after a 10 days incubation in darkness. This study also suggested an increased regeneration frequency of expanded young leaves which were taken from the mid-stem position, as well as from the explant abaxial surface contacting with the medium. In addition, hyperhydric of adventitious buds could be effectively reduced by adding 40 g l−1 sucrose to the medium. A 95.56% rooting rate could be produced from shoots cultured on half-strength Murashige and Skoog (in Physiol Plant 15:473–497, 1962) medium plus 2.69 μM NAA.  相似文献   

5.
Shoot organogenesis from mature leaf tissues of two scented Pelargonium capitatum cultivars, ‘Attar of Roses’ and ‘Atomic Snowflake’, grown in the greenhouse, were optimized in the presence of thidiazuron (TDZ). The protocol involved preculture of leaf sections on basal Murashige and Skoog (MS) medium supplemented with 10 μM TDZ, 4.4 μM of 6-benzyladenine (BA) and 5.4 μM α-naphtaleneacetic acid (NAA) for a period of 2 weeks and followed by subculture of explants to a fresh medium containing 4.4 μM BA and 5.4 μM NAA. Frequency of regeneration reached approximately 93% for both cultivars, with the induction of more than 100 shoots per explant. Regenerated plantlets were rooted on half-strength MS medium supplemented with 4.4 mM sucrose and 8.6 μM of Indole-3-acetic acid (IAA). All regenerated shoots from both cultivars developed roots when transferred to organic soil mix, acclimatized, and successfully transferred to greenhouse conditions. When regenerated shoots were transferred to hydroponic conditions, frequency of survival was 76.2 and 61.9% for ‘Attar of Roses’ and ‘Atomic Snowflake’, respectively.  相似文献   

6.
Ultrasonic treatment (0.5–2 min) stimulated multiple shoot regeneration to high levels in vitro from recalcitrant cotyledon explants of commercial squash (Cucurbita pepo L.) cultivars Ma’yan and Bareqet, on Murashige and Skoog [Physiol Plant 15:473–497, 1962] (regeneration) medium augmented with 4.4 μM benzyladenine. At this stage, unsonicated control explants regenerated only a few very small shoots or bud-like structures. Ultrasound also stimulated massive explant growth. Ultrasound treatment resulted in further multiple shoot production (five times greater than control) after explant transfer to elongation medium (Murashige and Skoog [Physiol Plant 15:473–497, 1962] medium with 0.44 μM benzyladenine and 2.9 μM gibberellic acid). Longer ultrasonic treatments (5 or 10 min) promoted multiple shoot regeneration and explant growth accompanied by hyperhydration. Scanning electron microscope observations showed that 2 min ultrasound changed the joint area between epidermal cells and removed some of the surface from the cotyledon epidermal cells, without gross surface injury to the explants. Longer periods of ultrasound (5–10 min) caused further surface erosion. Rubbing the explant contact surface with chloroform or sandpaper emulated the effect of sonication on shoot regeneration and explant growth, demonstrating that ultrasound exerts its morphogenic influence by surface removal. Sonication of explants from other batches of squash seeds (of cultivars Ma'yan and True French), that regenerated without such treatment, reduced regeneration and caused hyperhydration. This is the first report of stimulation of in vitro regeneration by ultrasound treatment. Electronic Supplementary Material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

7.
Summary Regeneration of adventitious shoots of pothos (Epipremnum aureum Linden and Andre) ‘Jade’ was obtained using leaf and petiole explants preprated from shoot tips of 3-yr-old greenhouse-grown plants. Explants were cultured on Murashige and Skoog (MS) basal medium supplemented with thidiazuron (TDZ), 6-(4-hydroxy-3-methy-trans-2-butenyl-amino)purine (zeatin) or N-isopentenylaminopurine (2iP) individually with α-naphthaleneacetic acid (NAA) in 18 combinations. Callus was initiated from cut surface and along the midrib or major vein of leaf sections. Shoot regeneration from leaf and petoole explants occurred in 30d on medium containing 1, 5 or 10μM TDZ with 0.5 or 1.0μM NAA except petioles on medium with 10 μM TDZ and 1.0 μM NAA where regeneration failed. More time (50d) was needed for shoot regeneration when explants were cultured on medium containing either 2iP or zeatin with NAA. Regeneration frequencies were up to 20% and 50% for leaf and petiole explants, respectively. Shoot numbers per responding explant attained 30 for leaf and petiole explants on medium containing TDZ but only one to four on medium containing either 2iP or zeatin. These results indicate that TDZ is a more effective cytokinin for in vitro regeneration of pothos than either zeatin or 2iP.. Shoots elongated readily and rooted well on MS basal medium, without plant growth regulators. Plantlets acclimatized rapidly and grew vigorously in the greenhouse after transfer to pots containing a commerecial potting medium.  相似文献   

8.
Morphogenetic potential of hypocotyl and cotyledon explants of the three Polish Capsicum annuum L. cultivars (Kujawianka, Passat and Zorza) was studied to develop a reliable plant regeneration protocol. Out of 8 and 15 combinations of growth regulators used in the first and second series respectively, the best medium contained BAP (5 mg·l−1) and IAA (1 mg·l−1). Media containing thidiazuron (TDZ) and IAA proved to be worse than those with BAP and IAA. Additionally, it was indicated that hypocotyl explants placed upside-down developed more adventious buds. ‘Passat’ was the most responsive variety (approximately 40 % of both types of explants produced buds). In the second part of experiment the aim was to stimulate shoot induction in the conditions most adapted to Agrobacterium transformation. ‘Bryza’ replaced cv ‘Kujawianka’ and proved to be better than ‘Passat’, previously distinguished as a highly responsive cultivar. The experiments confirmed a significant effect of the hypocotyl explant length and induction period on shoot regeneration. Finally, the optimum concentration of carbenicillin and kanamycin was determined.  相似文献   

9.
Summary A system for the regeneration of spinach (Spinacia oleracea L.) from mature dry seed explants has been established. The response of two commercial spinach cultivars, ‘Grandstand’ and ‘Baker’, was examined. Callus proliferation was most prominent on MS medium supplemented with 9.3 μM of 6-furfurylaminopurine (kinetin) and 3.39 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Adventitious shoot formation was observed within 8 wk after callus was transferred onto regeneration medium. Shoot regeneration was best from callus induced on 9.3 μM kinetin and 4.56 μM 2,4-D. The regeneration medium contained 9.3 μM kinetin, 0.045 μM 2,4-D, and 2.89 μM gibberellic acid (GA3). Shoots were rooted on hormone-free medium, and plants grown in a greenhouse showed normal phenotype. This system is beneficial in rapid propagation of spinach plants, particularly when only a limited number of seeds are available.  相似文献   

10.
The shoots developed from both the shoot tip and nodal explants of feathered amaranth (Celosia argentea var. plumosa—feathered cockscomb or plumed cockscomb) after 8 weeks of culture in the presence of either paclobutrazol or benzyladenine (BA) were shorter than those developed on basal Murashige and Skoog (MS) medium (Physiol Plant, 15:473–497, 1962) alone. However, this retarding effect was more pronounced in the nodal explant culture. Shoot tip explants from 2-week-old seedlings were more adversely affected by 0.85 or 1.7 μM paclobutrazol than those from older seedlings. In contrast, regardless of preculture duration investigated nodal explants did not exhibit different response to three different concentrations of paclobutazol. The response to 2.2 or 4.4 μM BA appeared to be largely independent of the age of the shoot tip explants or preculture treatment of nodal explants. Shoots developed from nodal explants produced a higher number of terminal inflorescence than those from shoot tip explants. Moreover, only lateral shoots from nodal explant culture formed inflorescence. Increased preculture duration on basal MS medium could generally lessen the inhibitory effect of lower concentrations of paclobutazol or BA on terminal or lateral inflorescence formation in nodal explant culture.  相似文献   

11.
Summary An in vitro propagation protocol has been developed using nodal explants from a mature ‘elite’ tree of Acacia sinuata. Tissue browning was circumvented by soaking surface-disinfected explants in a solution of antioxidant (238 μM citric acid). Maximum shoot proliferation (75.2%) was achieved from nodal explants collected during the December to March season in Murashige and Skoog's (MS) medium supplemented with 8.9μM 6-benzyladenine (BA), 2.5μM thidiazuron (TDZ), and 135.7μM adenine sulfate (AS) at the end of the first transfer following initial culture (60 d after inoculation). Gibberellic acid (GA3) at 1.8 μM promoted shoot elongation. The number of shoots was increased by (1) repeated subculturing of nodal explants on fresh medium with the same composition, and (2) using microcuttings from in vitro-regenerated shoots on MS medium containing 6.6 μM BA where each node produced four shoots. When transferred to half-strength MS medium augmented with 7.4 μM indolebutyric acid (IBA) in vitro-regenerated shoots produced prominent roots. Rooted plants were hardened and successfully established in soil. This protocol yielded an average of 100 plants per nodal explant over a period of 3 mo.  相似文献   

12.
Sweetpotato (Ipomoea batatas L.) is an important crop in North Carolina with annual production of 0.33 million tons, accounting for 37% of total US supply (USDA, Louisiana Farm Reporter 8(12), August 2008). To target industrial use, novel high-starch industrial-type varieties that contain more than 30% dry matter were developed by conventional breeding methods. In vitro cultures from selected genotypes were established using meristem culture. To establish regeneration procedures that could be coupled with transformation experiments, conditions for the induction of rapid shoot-organogenesis in leaf explants were compared using varying concentrations of the auxins ‘NAA’, ‘IAA’, ‘2,4-D’, and ‘4-FA’ either alone or in combination with zeatin riboside. Regeneration efficiencies, defined as the number of explants developing shoots out of the total number tested, were as high as 57% for the best genotypes, with a significant genotype-dependent response observed in all the hormone regimes evaluated. In all treatments, shoot regeneration was observed within 2 months. Our results led to the establishment of optimized in vitro regeneration procedures for the novel high-starch sweetpotato (SP) genotypes ‘DM01-158’, ‘FTA94’, ‘FT489’, and ‘PDM P4’ that are rapid and reliable.  相似文献   

13.
Protocols were developed to optimize adventitious shoot regeneration from four southern highbush blueberry cultivars. Leaf explants from 6 week-old shoots of the four cultivars were excised and cultured on woody plant medium each containing thidiazuron (4.54 or 9.08 μM), zeatin (18.2 μM), or zeatin riboside (5.7 or 11.4 μM) either separately or in combination with α-naphthaleneacetic acid at 2.69 μM. Optimum medium for shoot regeneration was genotype-dependent. Efficient regeneration was obtained at frequencies of 88.9% for ‘Jewel’, 87.8% for ‘Emerald’, 53.3% for ‘Jubilee’ and 87.8% for ‘Biloxi’. Leaf explants of newly developed shoots from the cultures having undergone five subcultures had higher regeneration frequencies than those having undergone two subcultures. Regenerated shoots, 80–100% for each cultivar, rooted in 8 weeks after transplantation to soil. The regeneration systems described have potential use in genetic transformation of southern highbush blueberry cultivars.  相似文献   

14.
Efficient in vitro regeneration systems for Vaccinium species   总被引:1,自引:0,他引:1  
Efficient protocols for shoot regeneration from leaf explants suitable for micropropagation as well as for the development of transgenic plants were developed for blueberry (Vaccinium corymbosum) and lingonberry (Vaccinium vitis-idaea) cultivars. Nodal segments were used to initiate in vitro shoot cultures of lingonberry cultivar ‘Red Pearl’ and southern highbush blueberry cultivar ‘Ozarkblue’. In order to develop an optimized regeneration procedure, different types and concentrations of plant growth regulators were tested to induce adventitious shoot regeneration on excised leaves from micropropagated shoots of both cultivars. The effect on percentage regeneration and number of shoots per explant was investigated. Results indicated that zeatin was superior to TDZ and meta-topolin in promoting adventitious shoot formation. A concentration of 20 μM zeatin was most effective in promoting shoot regeneration in both cultivars, in case of ‘Red Pearl’ along with 1 μM NAA. Shoots were either allowed to root in vitro on medium containing IBA or NAA or ex vitro in a fog tunnel. IBA was superior to NAA for induction of root development in vitro in both Vaccinium cultivars. Ex vitro rooting under high humidity was tested with cuttings from mature field-grown plants, from acclimatized tissue culture derived plants and with unrooted in vitro proliferated shoots planted directly. It was found that in vitro shoots rooted better under fog than cuttings from the other plant sources and rooting was equivalent to that achieved in vitro.  相似文献   

15.
Summary A procedure for the regeneration of ‘paradise tree’ (Melia azedarach, Meliaceae) plants from immature zygotic embryos via somatic embryogenesis was developed. Somatic embryos were induced from explants cultured on Murashige and Skoog medium supplemented with 0.45, 4.54, or 13.62 μM thidiazuron. Histological examination revealed that somatic embryos were induced directly from the explants. Further development of somatic embryos was accomplished with Murashige and Skoog medium at quarter-strength with 3% sucrose. A large number of plants were regenerated from somatic embryos and successfully established in soil in a greenhouse. These plants are morphologically similar to those of seed-derived plants. This system may be beneficial for mass propagation as well as for genetic manipulation of the ‘paradise tree’.  相似文献   

16.
High-frequency plant regeneration of C. roseus cv. ‘little bright eye’ via somatic embryogenesis and organogenesis from five out of six explants was standardized. Two factors were found to be important for regeneration: (1) the type of explants, and (2) the combination and concentrations of plant growth regulators. The highest regeneration percentage through somatic embryogenesis was obtained from mature zygotic embryo in MS medium supplemented with 7.5 μM of thidiazuron (TDZ). The mature embryo also regenerated efficiently via organogenesis in MS medium supplemented with either 2.5 μM TDZ or 5.3 μM α-naphthalene acetic acid (NAA) and 2.2 μM 6-benzylaminopurine (BA). Hypocotyl and cotyledon did not induce somatic embryogenesis and organogenesis in TDZ-containing medium but gave a maximum percentage of shoots in MS medium supplemented with 5.3 μM NAA and 2.2 μM BA. Stem nodes and meristem tips showed better regeneration via organogenesis in the medium supplemented with NAA and BA and in lower concentrations of TDZ.  相似文献   

17.
When cotyledonary explants, excised from in vitro germinated seedlings, of pomegranate (Punica granatum L.) were incubated on solid Murashige and Skoog (1962) medium supplemented with 21 μM naptheleneacetic acid (NAA) and 9 μM 6-benzyladenine (BA), 80% of explants developed callus. A high frequency of shoot organogensis was obtained when explants were incubated on MS medium supplemented with 8 μM BA, 6 μM NAA, and 6 μM giberrellic acid (GA3). However, adding 24 μM silver nitrate (AgNO3) to this medium markedly enhanced shoot regeneration frequency (63%) and mean number of shoots per explant (11.26) and length of shoots (2.22 cm). Highest frequency of in vitro rooting, mean number of roots/shoot (4.32), and mean root length (2.71 cm) were obtained when regenerated shoots were transferred to half-strength MS medium supplemented with 0.02% activated charcoal. Well-rooted plantlets were acclimatized, and then transferred to soil medium. Moreover, when zygotic embryos of P. granatum, excised from seeds collected at 16 weeks following full bloom, were incubated on MS medium containing 30 g l−1 sucrose, 15% coconut water, 21 μM NAA, and 9 μM BA, they developed the highest frequency of embryogenic callus, clumps with globular embryos, and mean number of both globular and heart-shaped embryos per callus clump. Subjecting zygotic embryo explants to six-week dark incubation period was essential for embryogenic callus induction, and these were subsequently transferred to 16 h photoperiod for further growth and development of somatic embryos. Germination of somatic embryos was observed when these were transferred to MS medium was supplemented with 60 g l−1 sucrose.  相似文献   

18.
The regenerative ability of small strips of stem of the Dutch elm hybrid ‘Commelin’ was tested as well as its sensitivity to neomycins. Cambium explants (1 mm thick), were excised from woody stems collected in the field. Up to 20 buds/explant were induced within 2–3 weeks giving 2–5 rootable shoots/explant after 5–6 weeks. Shoot excision every week from week three improved the yield up to 7 shoots per explant. Fourteen and 2.9 μM GA3 promoted shoot growth. Cytokinins (1 μM zeatin or 5 μM BA or 0.05 μM TDZ) completely inhibited shoot production and promoted callus formation. Kanamycin and paromomycin at between 240 and 360 μM inhibited shoot formation as did geneticin at 80 μM. The shoot-forming ability of the explants was high from leaf fall in the autumn to the spring flush, but could be maintained up to September by using cold storage (5–7 °C). Ninety-six percent of the shoots rooted with 0.5 μM IBA and were successfully acclimatized despite having a large basal callus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Summary An improved protocol for shoot regeneration from hypocotyl segments of seedlings from open-pollinated seeds of lingonberry (Vaccinium vitis-idaea L.) cultivars, ‘Ida’, ‘Splendor’, and ‘Erntesegen’, and a native clone from Newfoundland was developed. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, central, and basal segments of the hypocotyl was tested. Highly regenerative callus was obtained from hypocotyl segments on modified Murashige and Skoog (MMS) medium containing 5–10 μM TDZ. A maximum of 10 buds and 12 shoots per apical segment for seedlings of cultivar ‘Ida’ regenerated on MMS containing 10 μM TDZ. Callus and bud regeneration frequency, callus growth, and number of buds and shoots per regenerating explant depended not only on the specific segment of the hypocotyl, but also on parental genotype. Inhibition of shoot elongation by TDZ was overcome by transferring shoot cultures to a shoot proliferation medium containing 1–2 μM zeatin. The optimal concentration of sucrose for shoot elongation was 20 gl−1. Shoots were rooted ex vitro on a 2 peat: 1 perlite (v/v) medium after dipping in 0.8% indole-3-butyric acid, and rooted plants acclimatized readily under greenhouse conditions.  相似文献   

20.
Ramie [Boehmeria nivea (L.) Gaud] is one of the most important perennial fiber crops in China. In vitro tissue culture of ramie could serve as an important means for its improvement through genetic transformation. To improve the regeneration capacity of ramie, the effects on plant regeneration of donor plant age, basal medium, plant growth regulators, and culture conditions were evaluated using explants derived from the cotyledon, hypocotyl, leaf, petiole, and stem of ramie seedlings. Cotyledons and hypocotyls excised from 4-d-old seedlings and leaves and petioles and stems from 15-d-old seedlings were optimal explants. The highest regeneration efficiency was obtained on Murashige and Skoog salts with Gamborg’s B5 vitamins basal medium containing 2.27 μM thidiazuron (TDZ) and 0.054 μM naphthaleneacetic acid (NAA) for the five explant types tested. A photoperiod of 16:8 h (light/dark) was found to be superior than continuous darkness for regeneration of ramie using TDZ. The regenerated shoots were transferred to hormone-free medium for shoot elongation and successfully rooted on half-strength Murashige and Skoog supplemented with 0.134 μM NAA. The rooted plantlets with four to five leaves were transplanted to greenhouse for further growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号