首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the neuroprotective effect of blockers of voltage-dependent calcium channels (VDCC) and intracellular calcium stores on retinal ischemic damage induced by oxygen deprivation-low glucose insult (ODLG) was investigated. Retinal damage induced by ODLG was dependent on the calcium concentration in the perfusion medium. When incubated in medium containing 2.4 mM CaCl2, cell death in ischemic retinal slices treated with blockers of VDCC, ω-conotoxin GVIA (1.0 μM), ω-conotoxin MVIIC (100 nM) and nifedipine (1.0 μM), was reduced to 62 ± 2.3, 46 ± 4.3 and 47 ± 3.9%, respectively. In the presence of blockers of intracellular calcium stores, dantrolene (100 μM) and 2-APB (100 μM), the cell death was reduced to 46 ± 3.2 and 55 ± 2.9%, respectively. Tetrodotoxin (1.0 μM), reducing the extent of the membrane depolarization reduces the magnitude of calcium influx trough VDCC causing a reduction of the cell death to 55 ± 4.3. Lactate dehydrogenase content of untreated ischemic retinal slices was reduced by 37% and treatment of ischemic slices with BAPTA-AM (100 μM) or 2-APB (100 μM) abolished the leakage of LDH. Dantrolene (100 μM) and nifedipine (1.0 μM) partially blocked the induced reduction on the LDH content of retinal ischemic slices. Histological analysis of retinal ischemic slices showed 40% reduction of ganglion cells that was prevented by BAPTA-AM or dantrolene. 2-APB partially blocked this reduction whilst nifedipine had no effect, p > 0.95. Conclusion Blockers of VDCC and intracellular calcium-sensitive receptors exert neuroprotective effect on retinal ischemia.  相似文献   

2.
High-frequency somatic embryogenesis was achieved in Coffea canephora using calcium ionophore A23187, which influences the influx of calcium into a cell. With 100 μM calcium ionophore and 5 mM calcium, 85% and 70% of cultures produced embryogenic tissue, with 105 ± 7 and 95 ± 8 primary embryos from each callus mass respectively. Medium supplemented with 100 μM EGTA (calcium chelator) or 1 mM verapamil (calcium channel blocker) significantly reduced somatic embryogenesis. Calcium imaging studies were done to determine the relationship between morphogenetic response and the cellular calcium levels. The calcium ionophore/calcium treatment was very effective in driving cellular machinery toward embryogenesis. The embryos were regenerated into plantlets when cultured on MS medium supplemented with 5 mM calcium/100 μM calcium ionophore A23187. Somatic embryogenesis-derived plants were successfully transferred to soil and grown to maturity in the field.  相似文献   

3.
Biological and environmental effects of lanthanide series of elements have received much attention recently due to their wide applications. In this study, effects of La3+ treatments on calcium and magnesium concentrations as well as cytoplasmic streaming of internodal cells of Chara corallina were investigated. At all treatment concentrations (10, 100, and 1,000 μM), La3+ significantly decreased calcium concentrations in the cell-wall fractions after 5-h treatments. Calcium concentrations in the cell contents and magnesium concentrations in the cell-wall fractions were reduced by 100 and 1,000 μM La3+ treatments. However, cytoplasmic streaming as an indicator of [Ca2+]cyt was only inhibited at the highest La3+ concentration (1,000 μM). The results suggest that La3+ may affect cellular calcium homeostasis by actions other than as a simple Ca2+ antagonist. La3+ could partially compensate for calcium deficiency at certain concentrations.  相似文献   

4.
This study tested the hypothesis that l-arginine (Arg) may stimulate cell proliferation and prevent lipopolysaccharide (LPS)-induced death of intestinal cells. Intestinal porcine epithelial cells (IPEC-1) were cultured for 4 days in Arg-free Dulbecco’s modified Eagle’s-F12 Ham medium (DMEM-F12) containing 10, 100 or 350 μM Arg and 0 or 20 ng/ml LPS. Cell numbers, protein concentrations, protein synthesis and degradation, as well as mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) signaling pathways were determined. Without LPS, IPEC-1 cells exhibited time- and Arg-dependent growth curves. LPS treatment increased cell death and reduced protein concentrations in IPEC-1 cells. Addition of 100 and 350 μM Arg to culture medium dose-dependently attenuated LPS-induced cell death and reduction of protein concentrations, in comparison with the basal medium containing 10 μM Arg. Furthermore, supplementation of 100 and 350 μM Arg increased protein synthesis and reduced protein degradation in both control and LPS-treated IPEC-1 cells. Consistent with the data on cell growth and protein turnover, addition of 100 or 350 μM Arg to culture medium increased relative protein levels for phosphorylated mTOR and phosphorylated ribosomal protein S6 kinase-1, while reducing the relative levels of TLR4 and phosphorylated levels of nuclear factor-κB in LPS-treated IPEC-1 cells. These results demonstrate a protective effect of Arg against LPS-induced enterocyte damage through mechanisms involving mTOR and TLR4 signaling pathways, as well as intracellular protein turnover.  相似文献   

5.
The goal of these studies was todetermine whether different calcium channel antagonists affect glucosetransport in a neuronal cell line. Rat pheochromocytoma (PC-12) cellswere treated with L-, T-, and N-type calcium channel antagonists beforemeasurement of accumulation of 2-[3H]deoxyglucose(2-[3H]DG). The L-type channel antagonistsnimodipine, nifedipine, verapamil, and diltiazem all inhibited glucosetransport in a dose-dependent manner (2-150 µM) withnimodipine being the most potent and diltiazem only moderatelyinhibiting transport. T- and N-type channel antagonists had no effecton transport. The L-type channel agonist l-BAY K 8644 alsoinhibited uptake of 2-[3H]DG. The ability of these drugsto inhibit glucose transport was significantly diminished by thepresence of unlabeled 2-DG in the uptake medium. Some experiments wereperformed in the presence of EDTA (4 mM) or in uptake buffer withoutcalcium. The absence of calcium in the uptake medium had no effect oninhibition of glucose transport by nimodipine or verapamil. To examinethe effects of these drugs on a cell model of a peripheral tissue, westudied rat L6 muscle cells. The drugs inhibited glucose transport in L6 myoblasts in a dose-dependent manner that was independent of calciumin the uptake medium. These studies suggest that the calcium channelantagonists inhibit glucose transport in cells through mechanisms otherthan the antagonism of calcium channels, perhaps by acting directly onglucose transporters.

  相似文献   

6.
7.
Changes in electrophysiological and morphological characteristics of N1E-115 murine neuroblastoma cells induced by their incubation in a medium containing verapamil, a blocker of high-threshold calcium channels, and/or increased concentrations of KCl were investigated. On the 3th day of cultivation with 1.0 µM verapamil, the cells showed morphological differentiation and increased density of low-threshold calcium current. Incubation of cells in a high-potassium solution (25 mM) produced inhibition of morphological differentiation and reduction of the density of this current. Morphological and electrophysiological parameters of cells cultivated in a high-potassium medium with verapamil added were close to those of control cells. Verapamil taken at a lower concentration (0.01 µM) did not affect the characteristics of calcium current and morphological differentiation of the cells. Higher concentrations of verapamil (100 µM) substantially suppressed viability of cells (a decrease in cells' projective area, retraction of cell processes, and sharp reduction of calcium current density were observed). The results are consistent with suppositions about functional significance of intracellular calcium level for cell differentiation.Neirofiziologiya/Neurophysiology, Vol. 27, No. 4, pp. 261–267, July–August, 1995.  相似文献   

8.
The senile plaques of Alzheimer’s disease contain a high concentration of beta-amyloid (βA) protein, which may affect the glial population in the septal nucleus, an area of increased risk in AD. βA toxicity was measured in septal glia, via a dose-response experiment, by quantifying the effects of three different doses (0.1, 1, and 10 μM) of βA on cell survival. Astrocytes from embryonic day-16 rats were grown in serum-free media in a single layer culture. Cells were treated on day in vitro (DIV)1 and survival was determined on DIV3 to ascertain which concentration was most toxic. In a separate set of experiments, an attempt was made to protect glial cells from the degenerative effects of βA, with treatments of growth factors and estrogen. βA (10 μM) treatment was administered on DIV1, on DIV2 the cells were treated with estrogen (EST, 10 nM), insulin-like growth factors (IGF1 and IGF2, each 10 ng/ml), basic fibroblast growth factor (bFGF, 5 ng/ml) or nerve growth factor (NGF, 100 ng/ml), and on DIV3 the cells were visualized and quantified by fluorescence microscopy with DAPI (4,6-diamidino-2-phenylindole). In addition to dose-response and glial protection, experiments were also conducted to determine whether toxic effects were due to apoptosis. Our results suggest that the survival of glial populations is significantly affected in all three concentrations (0.1, 1.0, and 10 μM) of βA. Glial protection was evident in the presence of NGF, for it showed the significantly highest survival rate relative to the βA treatment alone. Furthermore, toxic effects of βA appear to be due primarily to apoptosis. Significant reversal of βA-induced apoptosis was seen with bFGF and IGF1.  相似文献   

9.
Homobrassinolide (HBR), which is one of the most biologically active forms of Brassinosteroids (BRs), was used to examine the potential effects of hormone on root germination, antioxidant system enzymes and cell division of barley (Hordeum vulgare L.). Seeds were germinated between filter papers in 0.1, 0.5 and 1.0 μM HBR-supplemented distilled water for 48 h at dark with their controls. HBR application increased especially the primary root growth significantly with increasing concentrations when compared with the control materials and reached two fold increase in 1.0 μM HBR treated material. Treated and untreated control group roots were fixed in 1:3 aceto-alcohol and aceto-orcein preparations were made. Roots treated with HBR showed more mitotic activity, mitotic abnormalities and significant enlargements at the root tips when compared with control material. HBR application decreased total soluble protein content, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.11) activities significantly at 1.0 μM HBR concentration. Data presented here is one of the first detailed analyses of HBR effect on barley root development.  相似文献   

10.
Capsaicin, the pungent ingredient of hot chilli pepper, has been recently shown to induce apoptosis in several cell lines through a not well known mechanism. Here, we investigated the role of the vanilloid capsaicin in the death regulation of the human cancer androgen-resistant cell line PC-3. Capsaicin inhibited the growth of PC-3 with an IC50 of 20 μM cells and induced cell apoptosis, as assessed by flow cytometry and nuclei staining with DAPI. Capsaicin induced apoptosis in prostate cells by a mechanism involving reactive oxygen species generation, dissipation of the mitochondrial inner transmembrane potential (ΔΨm) and activation of caspase 3. Capsaicin-induced apoptosis was not reduced by the antagonist capsazepine in a dose range from 0.1 μM to 20 μM, suggesting a receptor-independent mechanism. To study the in vivo effects of capsaicinoids, PC-3 cells were grown as xenografts in nude mice. Subcutaneous injection of either capsaicin or capsazepine (5 mg/kg body weight) in nude mice suppressed PC-3 tumor growth in all tumors investigated and induced apoptosis of tumor cells. Our data show a role for capsaicin against androgen-independent prostate cancer cells in vitro and in vivo and suggest that capsaicin is a promising anti-tumor agent in hormone-refractory prostate cancer, which shows resistance to many chemotherapeutic agents.  相似文献   

11.
In this study, biomass, growth and free proline concentration were investigated in Spirulina platensis treated with different concentrations of NaCl (50, 100, 150, and 200 mM) and 24-epibrassinolide (24-epiBL) hormone (0.5, 1.0, and 3.0 μM) over 5 days. As a result of analysing the cultures under salinity stress, it was determined that biomass and growth rate decreased significantly, while proline concentration increased considerably under salinity stress. The increase in the concentration of proline suggests a role in response to NaCl stress. Among the cultures treated with different concentrations of 24-epiBL, maximum growth was determined at the cultures at 1.0 μM 24-epiBL. Algal growth was also greater at the 0.5 and 3.0 μM concentrations of 24-epiBL with respect to control cultures. With respect to control, 24-epiBL affected growth rate and biomass positively, but proline concentration did not change. Among the cultures supplied with different combinations of NaCl and 24-epiBL, growth rate increased in 150/0.5 and 150/3.0 mM/μM concentrations, but was maximal for the culture containing 150/1.0 mM/μM combination. The increase in algal growth suggests a role for 24-epiBL in partially alleviated to NaCl stress. These results suggest that 24-epiBL may have a protective role for S. platensis reducing the inhibitor effects of salinity stress.  相似文献   

12.
The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders. Nigella sativa L. (family Ranunculaceae) and its active component thymoquinone (TQ) has been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 cells were cultured in DMEM medium containing 10% (v/v) fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml streptomycin. Cells were seeded overnight and then deprived of serum/glucose for 6 and 18 h. Cells were pretreated with different concentrations of N. sativa extract (15.62–250 μg/ml) and TQ (1.17–150 μM) for 2 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2′,7′-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (P < 0.001). Pretreatment with N. sativa (15.62–250 μg/ml) and TQ (1.17–37.5 μM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (P < 0.001). N. sativa (250 μg/ml, P < 0.01) and TQ (2.34, 4.68, 9.37 μM, P < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.  相似文献   

13.
Gills are the first site of impact by metal ions in contaminated waters. Work on whole gill cells and metal uptake has not been reported before in crustaceans. In this study, gill filaments of the American lobster, Homarus americanus, were dissociated in physiological saline and separated into several cell types on a 30, 40, 50, and 80% sucrose gradient. Cells from each sucrose solution were separately resuspended in physiological saline and incubated in 65Zn2+ in order to assess the nature of metal uptake by each cell type. Characteristics of zinc accumulation by each kind of cell were investigated in the presence and absence of 10 mM calcium, variable NaCl concentrations and pH values, and 100 μM verapamil, nifedipine, and the calcium ionophore A23187. 65Zn2+ influxes were hyperbolic functions of zinc concentration (1–1,000 μM) and followed Michaelis–Menten kinetics. Calcium reduced both apparent zinc binding affinity (K m) and maximal transport velocity (J max) for 30% sucrose cells, but doubled the apparent maximal transport velocity for 80% sucrose cells. Results suggest that calcium, sodium, and protons enter gill epithelial cells by an endogenous broad-specificity cation channel and trans-stimulate metal uptake by a plasma membrane carrier system. Differences in zinc transport observed between gill epithelial cell types appear related to apparent affinity differences of the transporters in each kind of cell. Low affinity cells from 30% sucrose were inhibited by calcium, while high affinity cells from 80% sucrose were stimulated. 65Zn2+ transport was also studied by isolated, intact, gill filament tips. These intact gill fragments generally displayed the same transport properties as did cells from 80% sucrose and provided support for metal uptake processes being an apical phenomenon. A working model for zinc transport by lobster gill cells is presented.  相似文献   

14.
The genus Dierama comprises plants with a potential to be developed as ornamentals. D. erectum seeds were decontaminated and germinated on 1/10th strength Murashige and Skoog (Physiol Plant 15:473–497, 1962) (MS) media without plant growth regulators or sucrose. In an experiment investigating the effects of 6-benzyladenine (BA), meta-Topolin (mT), kinetin (KIN) and zeatin (Z) with or without α-naphthaleneacetic acid (NAA), the highest shoot number per hypocotyl (4.20 ± 0.51) was obtained from MS medium supplemented with 1.0 μM Z after 8 weeks. This was followed by a combination of 2.0 μM KIN and 2.0 μM NAA with 3.67 ± 0.81 shoots per explant. BA treatments produced 3.20 ± 0.22 shoots per hypocotyl explant when 2.0 μM was combined with 1.0 μM NAA, while mT gave 3.09 ± 0.99 shoots per explant when 2.0 μM mT was combined with 2.0 μM NAA. Adventitious shoot regeneration was optimised when shoots were grown under a 16-h photoperiod at 100 μmol m−2 s−1 on MS medium supplemented with 1.0 μM BA. This resulted in an average of 12.73 ± 1.03 shoots per hypocotyl explant. Various concentrations of ancymidol, activated charcoal and sucrose did not promote in vitro corm formation of this species. Plants rooted successfully after 8 weeks on MS medium supplemented with 1.0 μM indole-3-butyric acid (IBA) and had an average root number of 2.73 ± 0.40. After 2 months of acclimatisation, plants had formed corms. The largest corms (of diameter 0.45 ± 0.03 cm) were produced in plants pre-treated with 0.5 μM IBA. The highest plant survival percentage of 73% was also associated with this treatment.  相似文献   

15.
Sclerocarya birrea (marula) is an indigenous South African tree with highly valued medicinal and nutritional properties. Induction of nodular meristemoids from leaf explants was achieved on Murashige and Skoog (MS) and woody plant medium (WPM) supplemented with 6-benzyladenine (BA) in combination with naphthalene acetic acid (NAA), indole-3-butryric acid (IBA) and indole-3-acetic acid (IAA). Induction of nodular meristemoids from 86% of the leaf cultures was achieved on MS medium with 4.0 μM BA and 1.0 μM NAA. High levels (78–100%) of induction were also achieved on WPM with different concentrations of BA (1.0–4.0 μM) and IBA (1.0–4.0 μM). The highest conversion of meristemoids into shoots was only 22% for 4.0 μM BA and 1.0 μM NAA on MS initiation medium. This was improved to 62% when nodular clusters were cultured in a MS liquid medium. Histological studies revealed the globular stage of the nodular meristemoids. This protocol has potential for application in mass micropropagation and plant breeding of S. birrea.  相似文献   

16.
Epinodosin, an ent-kaurane diterpenoid isolated from Isodon japonica var. galaucocalyx, had a biphasic, dose-dependent effect on root growth and a strong inhibitory effect on root hair development in Lactuca sativa L. seedlings. Lower levels of epinodosin (25–100 μM) significantly promoted root growth, but higher concentrations (150–200 μM), by contrast, had inhibitory effects. In addition, all of the tested concentrations (20–80 μM) inhibited root hair development of lettuce seedlings in a dose-dependent manner. Further investigations on the underlying mechanism revealed that the promotion effect of epinodosin (25–100 μM) resulted from increasing the cell length in the mature region and enhancing the mitotic activity of meristematic cells in lettuce seedling root tips. On the other hand, epinodosin at higher concentrations inhibited root growth by strongly affecting both the cell length in the mature region and the division of meristematic cells. Comet assay analysis demonstrated that the decrease of mitotic activity of root meristematic cells was due to DNA damage induced by higher levels of epinodosin.  相似文献   

17.
Summary 1. The relationships among the mevalonic acid (MVA) forming enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (CoA) reductase, cell growth and differentiation, and the cytotoxic effects of the reductase inhibitor lovastatin were studied in PC-12 cells, exposed to growth factors.2. When added individually, nerve growth factor (NGF), basic fibroblast growth factor, and epidermal growth factor induce an increase in HMG-CoA reductase activity in cells grown in serum-containing medium. In the presence of serum, the effect of NGF on HMG-CoA reductase is persistent.3. Short-term serum starvation and long-term NGF treatment, in combination, have an additive effect, resulting in a high reductase activity.4. Unlike serum and MVA, which downregulate levels of HMG-CoA reductase by accelerating its degradation, NGF upregulates reductase by slowing the rate of its degradation. This mechanism, however, appears to operate only in the presence of serum, as after prolonged growth with NGF in serum-free medium, cells have a low reductase activity.5. PC-12 cells grown in the absence of NGF are highly sensitive to lovastatin (25 µM) and more than 70% of the cells die after 48 hr. NGF confers lovastatin resistance on cells grown in the presence or in the absence of serum (only 30–40% cell death after 48 hr with lovastatin).6. NGF-induced resistance on lovastatin develops with time and is apparent only in the well-differentiated PC-12 cells whether or not the cells express a high reductase activity.7. Thus, levels of HMG-CoA reductase activity and lovastatin resistance in PC-12 cells are not directly correlated, though clearly inversed lovastatin cytotoxicity and elevated reductase activities are expressed during the period of cell proliferation.8. These data suggest that fully differentiated neuronal cells may not be affected by prolonged high doses of lovastatin.  相似文献   

18.
Fast neuromodulatory effects of 17-β-estradiol (E2) on cytosolic calcium concentration ([Ca2+] i ) have been reported in many cell types, but little is known about its direct effects on vesicular neurotransmitter secretion (exocytosis). We examined the effects of E2 on depolarization-evoked [Ca2+] i in PC12 cells using fluorescence measurements. Imaging of [Ca2+] i with FURA-2 revealed that depolarization-evoked calcium entry is inhibited after exposure to 10 nM and 10 μM E2. Calcium entry after exposure to 50 μM E2 decreases slightly, but insignificantly. To relate E2-induced changes in [Ca2+] i to functional effects, we measured exocytosis using amperometry. It was observed that E2 in some cells elicits exocytosis upon exposure. In addition, E2 inhibits depolarization-evoked exocytosis with a complex concentration dependence, with inhibition at both physiological and pharmacological concentrations. This rapid inhibition amounts to 45% at a near physiological level (10 nM E2), and 50% at a possible pharmacological concentration of 50 μM. A small percentage (22%) of cells show exocytosis during E2 exposure (“Estrogen stimulated”), thus vesicle depletion could possibly account (at least partly) for the E2-induced inhibition of depolarization-evoked exocytosis. In cells that do not exhibit E2-stimulated release (“Estrogen quiet”), the E2-induced inhibition of exocytosis is abolished by a treatment that eliminates the contribution of N-type voltage-gated calcium channels (VGCCs) to exocytosis. Overall, the data suggest that E2 can act on N-type VGCCs to affect secretion of neurotransmitters. This provides an additional mechanism for the modulation of neuronal communication and plasticity by steroids.  相似文献   

19.
Creamy friable calli were induced from meristems (scalps) of proliferating shoots of plantain (Musa sp.) cv. Spambia (genome AAB) incubated on a semi-solid modified Murashige and Skoog (MS) medium supplemented with 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 μM zeatin. About 25% of shoot-tip explants formed scalps, and about 98% of scalps developed embryogenic calli. Small dense aggregates of cells, were obtained when these calli were transferred to liquid MS medium supplemented with 4.5 μM 2,4-D and 1.0 μM zeatin. Upon transfer to semi-solid MS medium of the same composition as described above, aggregates of cells formed somatic embryos. In the presence of 2.5 μM abscisic acid (ABA), maturation of somatic embryos was 2.6-fold higher than that of control (lacking ABA), and regardless of the type of cytokinin used in the medium. Upon transfer to MS medium supplemented with 1.25 μM 6-benzyladenine (BA), 80% of germinated embryos developed into plantlets.  相似文献   

20.
The leukemia cell line HL60 is widely used in studies of the cell cycle, apoptosis, and adhesion mechanisms in cancer cells. We conducted a focused cytogenetic study in an HL60 cell line, by analyzing GTG-banded chromosomes before and after treatment with pisosterol (at 0.5, 1.0, and 1.8 μg/ml), a triterpene isolated from Pisolithus tinctorius, a fungus collected in the Northeast of Brazil. Before treatment, 99% of the cells showed the homogeneously staining region (HSR) 8q24 aberration. After treatment with 1.8 μg/ml pisosterol, 90% of the analyzed cells lacked this aberration. We further performed a pulse test, in which the cells treated with pisosterol (0.5, 1.0, and 1.8 μg/ml) were washed and re-incubated in the absence of pisosterol. Only 30% of the analyzed cells lacked the HSR 8q24 aberration, suggesting that pisosterol probably blocks the cells with HSRs at interphase. No effects were detected at lower concentrations. At the highest concentration examined (1.8 μg/ml), pisosterol also inhibited cell growth, but this effect was not observed in the pulse test, reinforcing our hypothesis that, at the concentrations tested, pisosterol probably does not induce cell death in the HL60 line. The results found for pisosterol were compared with those for doxorubicin. Cells that do not show a high degree of gene amplification (HSRs and double-minute chromosomes) have a less aggressive and invasive behavior and are easy targets for chemotherapy. Therefore, further studies are needed to examine the use of pisosterol in combination with conventional anti-cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号