首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The onset of incubation before the end of laying imposes asynchrony at hatching and, therefore, a size hierarchy in the brood. It has been argued that hatching asynchrony might be a strategy to improve reproductive output in terms of quality or quantity of offspring. However, little is known about the mediating effect of hatching asynchrony on offspring quality when brood reduction occurs. Here, we investigate the relationship between phenotypic quality and hatching asynchrony in Common Kestrel Falco tinnunculus nestlings in Spain. Hatching asynchrony did not increase breeding success or nestling quality. Furthermore, hatching asynchrony and brood reduction had different effects on nestlings’ phytohaematogglutinin (PHA)‐mediated immune response and nestling growth. In asynchronous and reduced broods (in which at least one nestling died), nestlings showed a stronger PHA‐mediated immune response and tended to have a smaller body size compared with nestlings raised in synchronous and reduced broods. When brood reduction occurred in broods hatched synchronously, there was no effect on nestling size, but nestlings had a relatively poor PHA‐mediated immune response compared with nestlings raised in asynchronous and reduced broods. We suggest that resources for growth can be directed to immune function only in asynchronously hatched broods, resulting in improved nestling quality, as suggested by their immune response. We also found that males produced a greater PHA‐mediated immune response than females only in brood‐reduced nests without any effect on nestling size or condition, suggesting that females may trade off immune activities and body condition, size or weight. Overall, our results suggest that hatching pattern and brood reduction may mediate resource allocation to different fitness traits. They also highlight that the resolution of immune‐related trade‐offs when brood reduction occurs may differ between male and female nestlings.  相似文献   

2.
In sexually size‐dimorphic species, brood sex composition may exert differential effects on sex‐specific mortality. We investigated the sex‐specific mortality and body condition in relation to brood sex composition in nestlings of the black‐billed magpie Pica pica. Neither significantly sex‐biased production at hatching nor overall sex‐biased mortality during the nestling period was found. Sex‐specific mortality as a function of brood sex composition, however, differed between female and male nestlings. We found higher mortality for females in male‐biased broods and higher mortality for males in female‐biased broods, a phenomenon that we call ‘rarer‐sex disadvantage’. As a result, fledging sex ratios became more biased in the direction of bias at hatching, a phenomenon that cannot be readily explained by previous hypotheses for sex‐specific mortality. Two temporal variables, fledging date and laying date, were also correlated with sex‐specific mortality: female nestlings in earlier broods experienced higher mortality than male nestlings whereas male nestlings in later broods experienced higher mortality. We suggest that this unusual pattern of mortality may be explained by adaptive adjustments of brood sex composition by parents, either through the effects of a slight sex difference in offspring dispersal patterns on parental fitness, or owing to sex differences as regards the benefits of early fledging.  相似文献   

3.
Condition‐dependent resource allocation to eggs can affect offspring growth and survival, with potentially different effects on male and female offspring, particularly in sexually dimorphic species. We investigated the influence of maternal body condition (i.e., mass‐tarsus residuals) and two measures of female resource allocation (i.e., egg mass, yolk carotenoid concentrations) on nestling mass and growth rates in the polygynous and highly size dimorphic yellow‐headed blackbird Xanthocephalus xanthocephalus. Egg characteristics and carotenoid concentrations were obtained from the third‐laid egg of each clutch and were correlated with the mass and growth rates of the first two asynchronously hatched nestlings. Maternal body condition was associated with the growth of first‐hatched, but not second‐hatched nestlings. Specifically, females in better body condition produced larger and faster growing first‐hatched nestlings than females in poorer body condition. As predicted for a polygynous, size‐dimorphic species, females that fledged first‐hatched sons were in better body condition than females that fledged first‐hatched daughters. Associations between egg mass, yolk carotenoid content, and nestling growth were also specific to hatching‐order. Egg mass was positively correlated with the mass and growth rates of second‐hatched nestlings, and yolk concentrations of β‐carotene were positively correlated with second‐hatched nestling mass. Surprisingly, the relationship between yolk lutein and hatchling growth differed between the sexes. Females with high concentrations of yolk lutein produced larger and faster growing first‐hatched sons, but smaller first‐hatched daughters than females with lower lutein concentrations. Mass and growth rates did not differ between first‐ and second‐hatched nestlings of the same sex, despite asynchronous hatching in the species. Results from this study suggest that maternal body condition and the allocation of resources to eggs have carotenoid‐, sex‐, and/or hatch‐order‐specific effects on yellow‐headed blackbird nestlings.  相似文献   

4.
In the jackdaw Corvus monedula , eggs hatch asynchronously with the youngest chicks in the brood often starving to death. So far, it is unknown whether there are sex differences in vulnerability to starvation. Adult females are smaller than males suggesting that daughters should be cheaper to produce than sons and so, less likely to starve when nest conditions are poor. Here, we determine whether sex, laying order and season interact to influence growth and fledging success. In a nestbox population of jackdaws, we found a non-significant female bias at both hatching (112:120) and fledging (37:52). Generalised linear models revealed that parents seemed to be investing differently in sons and daughters depending on their chances of success. Broods produced late in the season were significantly female biased, particularly those from small clutches. Females hatched towards the end of the season, when conditions were poor, were more likely to fledge than males. Nestlings that were relatively large at hatching were more likely to fledge. This effect was particularly important for last hatched individuals. Overall, males had a higher mortality rate than females. The most likely cause was starvation due to higher energetic requirements, because males were larger than females at fledging. We suggest that in species with brood reduction, sex-biased mortality may be at least as important as primary sex ratio manipulation in determining avian sex ratios.  相似文献   

5.
Distribution of food to early and late hatched nestlings was studied in asynchronously hatched broods of the great tit Parus major, the blackbird Turdus merula, and the fieldfare T. pilaris. Food distribution is related to the locomotory and begging behaviour and positions in the nest of these nestlings. Late hatched (small) nestlings were found to beg more often per feed than bigger nestlings and move more towards favoured positions in the nest to counteract selective feeding of bigger young. The functional significance of these differences in the behaviour of early and late hatched nestlings are discussed. It is argued that they are adaptive by 1) ensuring that each nestling survives when food supplies are ample, and 2) by mediating an optimal brood reduction when food is insufficient to raise the entire brood. The roles of asynchronous hatching, and selective feeding which follows from differential behaviour of early and late hatched young are discussed in relation to food conditions during the breeding season.  相似文献   

6.
D. M. BRYANT 《Ibis》1978,120(3):271-283
Growth of nestling House Martins was studied in relation to (a) conditions in the external environment and (b) aspects of their breeding biology. The dependence of growth performance on (1) hatchling weights, (2) relative difference in hatchling weights within broods, (3) brood size,(4) season, (5) earliness of breeding in relation to other pairs in the colony, (6) timing of breeding in relation to the median breeding week of the colony and (7) aerial food abundance, was investigated by step-down multiple regression analysis. Up to the stage of the peak brood weight, early laying, small brood sizes and high hatchling weights were associated with higher nestling growth rates. Large relative differences in hatchling weights however tended to depress mean brood weights and increase weight differences (= size hierarchies) within broods. These differences in hatchling weights were considered to contribute significantly to 23% of all nestling deaths, because small, late hatching nestlings suffered very high mortality even when food was abundant. The nestlings which died showed a progressive reduction on growth rates and all succumbed before the 11th nestling day. Because these differences in hatchling weights can be linked to the food supply during laying rather than immediately prior to their death, it is considered that the mortality of these nestlings can ultimately be attributed to the low quality of eggs from which they hatched. There was a tendency for pre-hatching factors to diminish in importance throughout growth, while post-hatching factors increased in importance and, with one exception, were responsible for explaining all the significant variance in the growth characteristics of fledglings. The exception was that differences in wing-lengths in broods could be linked with weight differences at hatching. Food shortages lowered average brood weights prior to fledging. Because pairs breeding during the median breeding week had lighter young, it was inferred that competition for food during this peak of breeding activity had the effect of lowering nestling growth performance, although the overall effect was considered to be small. Early breeding pairs tended to have larger broods, and these large broods showed a lowered growth performance. However, early breeding pairs had relatively smaller weight and wing-length differences, in broods of a given size, than occurred in broods of late breeders. It was therefore concluded that early breeding pairs had some attribute which tended to minimize certain disadvantages of large broods. This effect appeared to be linked to the pair, rather than to season or food supply.  相似文献   

7.
Individual offspring within a brood may receive different amounts of provisioning from the male and female parents. Some hypotheses suggest that this bias is the result of an active and adaptive choice by parents. An alternative hypothesis is that feeding biases arise as a result of a constraint of fitting large prey items into small gapes. In an experiment with pied flycatchers, Ficedula hypoleuca , we tested for sex-biased allocation to junior nestlings in asynchronous broods and whether this could be explained by active parental choice or by passive allocation according to prey size and gape size. In both control broods and broods with experimentally increased degree of asynchrony, prey types did not differ between parents but females brought smaller prey than males at younger but not older nestling stages. At younger but not older nestling stages, the majority of feeds to junior nestlings were from females, and the smaller nestlings consumed smaller prey than older siblings. However, there was no evidence of active preference of small nestlings by females as parents did not differ in the tendency to bypass a begging senior nestling in order to feed a junior nestling. Provisioning rates by females were lower than those by males when nestlings were young and we suggest that foraging time constraints caused by the need to brood offspring result in females bringing smaller prey than males. In turn, the larger prey brought by males was more often transferred to larger offspring after the smaller ones failed to swallow it. In such cases, 'preferential' feeding of small nestlings by females may simply be a passive side effect of foraging constraints and gape-size limitations.  相似文献   

8.
Intraclutch egg size variation may non‐adaptively result from nutritional/energetic constraints acting on laying females or may reflect adaptive differential investment in offspring in relation to laying/hatching order. This variation may contribute to size hierarchies among siblings already established due to hatching asynchrony, and resultant competitive asymmetries often lead to starvation of the weakest nestling within a brood. The costs in terms of chick mortality can be high. However, the extent to which this mortality is egg size‐mediated remains unclear, especially in relation to hatching asynchrony which may operate concomitantly. I assessed effects of egg size and hatching asynchrony on nestling development and survival of Herring Gulls (Larus argentatus), where the smaller size and later hatching of c‐eggs may represent a brood‐reduction strategy. To analyze variation in egg size, I recorded the laying order and laying date of 870 eggs in 290 three‐egg clutches over a 3‐yr period (2010–2012). I measured hatchlings and monitored growth and survival of 130 chicks from enclosed nests in 2011 and 2012. The negative effect of laying date (β = ?0.18 ± SE 0.06, P = 0.002) on c‐egg size possibly reflected the fact that late breeders were either low quality or inexperienced females. The mass, size, and condition of hatchling Herring Gulls were positively related to egg size (all P < 0.0001). C‐chicks suffered from increased mortality risk during the first 12 d, identified as the brood‐reduction period in my study population. Although intraclutch variation in egg size was not directly related to patterns of chick mortality, I found that smaller relative egg size interactively increased differences in relative body condition of nestlings, primarily brought about by the degree of hatching asynchrony during this brood‐reduction period. Thus, the value of relatively small c‐eggs in Herring Gulls may lie in reinforcing brood reduction through effects on nestling body condition. A reproductive strategy Herring Gulls might have adopted to maintain a three‐egg clutch, but that also enables them to adjust the number of chicks they rear relative to the prevailing environmental conditions and to their own condition during the nestling stage.  相似文献   

9.
Carotenoid-based coloration occurs predominantly in adult birds, yet in some species from the family Paridae, this trait is also present at the nestling stage. One of the factors proposed to affect the expression of this trait in immature birds is hatching date. Here, using the avian tetrahedral colour space model, we examined the influence of hatching date on the breast carotenoid-based plumage coloration of the Blue Tit Cyanistes caeruleus nestlings. Because Blue Tits are sexually dichromatic, we also investigated the potential interaction between hatching date and sex that could arise from differences in condition dependence of this trait between males and females. We found a positive relationship between UV chroma of breast feathers and hatching date. The amount of UV reflectance is thought to be negatively related to carotenoid content in feathers. The observed increase of UV chroma through the breeding season might therefore be caused by a seasonal decline in the availability and quality of Lepidoptera larvae – the main source of carotenoids in food of the Tits. We also observed a sex difference in the relationship between brightness of breast feathers (achromatic, structural component) and hatching date, which in males was negative and in females not significant. Our study provides further evidence that the timing of breeding is related to the expression of nestling carotenoid-based coloration, a potentially meaningful element of offspring–parent communication, and suggests a sex-specific effect of hatching date on its structural component.  相似文献   

10.
We examined the brood sex ratio and offspring body mass in relation to the timing of breeding and brood size in the Great Cormorant Phalacrocorax carbo sinensis. The brood sex ratio was not related to brood size but it was significantly related to the hatching date, with a decreasing proportion of males in the brood in the course of the season. Male chicks had significantly lower body mass if they hatched later in the season, whereas there was no such relationship for female offspring. Assuming that environmental conditions deteriorate with progress of the breeding season, and male offspring may be more vulnerable to poor environmental conditions, the observed decline in the proportion of male offspring late in the season may be adaptive.  相似文献   

11.
The magnitude of sexual size dimorphism can be affected by sex differences in environmental sensitivity early in ontogeny that result in differential growth rates of male and female nestlings. Here, the larger sex might either be more sensitive because of higher food demands or less sensitive due to greater competitive ability. When environmental conditions deteriorate during the breeding season, this “environmental stress” hypothesis predicts differential seasonal declines in the performance of male and female offspring. Based on a sample of molecularly sexed Coal Tit (Periparus ater) nestlings from 2 years, we investigated sexual size dimorphism in body mass, condition (i.e. size-corrected mass), tarsus and wing length and whether its magnitude changed from early to late broods. Male offspring were heavier, larger (in terms of tarsus and wing length) and had higher size-corrected mass than their female nest mates (the same was evident in adult breeders). In 2002 (the year with the longer effective breeding season), body mass and condition declined with progressing hatching date and this effect was significantly more pronounced in male than in female nestlings. There was also a seasonal decline in male wing length, while female wing length remained relatively constant, which resulted in males having shorter wings than females in late broods. Tarsus length was unaffected by time of breeding, except that the difference between males and females was relatively smaller in late (i.e. second) broods in 2002. While these results are in accordance with the idea of an increased environmental sensitivity of the larger males, confounding effects of sex-differential hatching order cannot be ruled out. Dedicated to Doris Winkel.  相似文献   

12.
1. Here we examine how sex ratio variation in house sparrow broods interacts with other demographic traits and parental characteristics to improve the understanding of adaptive significance and demographic effects on variation in sex ratio. 2. The sex ratio in complete broods did not deviate significantly from parity (54.9% males). 3. There was sex-specific seasonal variation in the probability of recruitment. Male nestlings that hatched late in the breeding season had larger probability of surviving than early hatched males. 4. An adaptive adjustment of sex ratio should favour production of an excess of males late in the breeding season. Accordingly, the proportion of male offspring increased throughout the breeding season. 5. A significant nonlinear relationship was present between sex ratio and age of the female. However, there was no relationship between parental phenotype and standardized hatch day that could explain the observed seasonal change in sex ratio. 6. The sex-specific number of offspring recruited by a pair to subsequent generations was closely related to the brood sex ratio. 7. These results indicate an adaptive adjustment of sex ratio to seasonal variation in environmental conditions that affects the offspring fitness of the two sexes differently. Our results also suggest that such a sex ratio variation can strongly influence the demography and structural composition of small passerine populations.  相似文献   

13.
Growth is a fundamental life history trait in all organisms and is closely related to individual fitness. In altricial birds, growth of many traits is restricted to the short period between hatching and fledging and strongly depends on the amount of food that parents deliver and the extent of hatching asynchrony. However, empirical studies of energy allocation to growth of different body size traits as a function of hatching asynchrony are scarce. We studied growth and mortality of Eurasian Hoopoe Upupa epops, a species with a long breeding season and high brood size variance, whose nestlings show pronounced hatching asynchrony, in order to test how hatching asynchrony affects different growth traits in the context of territory quality, season and brood size. The growth of five body traits (body mass, and lengths of tarsus, third primary, bill and longest crest feather) was investigated to understand how it was affected by brood size, hatching date and order, and territory quality. In total, 241 nestlings from 39 nests were measured every 4 days in 2014 in south‐western Switzerland. Brood size, hatching date and hatching order had the strongest influence on growth trajectories, although tarsus growth was only marginally affected by these variables. Nestlings that hatched earlier than their siblings were heavier and had longer third primaries, bills and crest feathers compared with later‐hatched siblings. In territories of high quality, hatching order differences disappeared for body mass growth, but persisted for lengths of third primary, bill and crest feathers. Brood size was inversely associated with third primary, bill and crest feather lengths, but positively associated with body mass. Nestling mortality was higher in later‐hatched nestlings and in broods that were raised in territories of lower quality. Our study shows that in nestlings, energy was allocated differentially between body traits and this allocation interacted with hatching order and territory quality. Rapid mass gain by nestlings was prioritized in order to increase competitive ability. Our results provide support for the brood reduction hypothesis as an explanation of hatching asynchrony in Hoopoes.  相似文献   

14.
ABSTRACT The sex ratios of offspring are targets of natural selection that can affect parental energy expenditure and fitness, adult sex ratios, and population dynamics. Parents may manipulate offspring sex ratios based on sex differences in their offsprings' potential for reproductive success. In Lincoln's Sparrows (Melospiza lincolnii), male bill shape is associated with the quality of songs, and song quality predicts female preferences in a reproductive context. Males and females that hatch later relative to brood mates or later in the breeding season tend to develop bill shapes that are, for males, associated with low‐quality song. Because females do not sing and do not experience this selection pressure, we predicted that the sex of offspring produced late relative to their brood mates or relative to the season should be biased toward females. Using a molecular technique to sex nestlings, we found no effects of hatching order or any interaction between date of clutch initiation (season) and hatching order on offspring sex. However, we found a seasonal decline in the proportion of male offspring, from approximately 0.8 at the beginning to 0.4 at the end of a clutch initiation season only 19 d in duration. To our knowledge, this is the shortest period over which the offspring sex ratio has been shown to change in a bird population. Moreover, these findings are consistent with the hypothesis that sex differences in the potential attractiveness of offspring ultimately influence offspring sex ratios.  相似文献   

15.
Complex sex allocation in the laughing kookaburra   总被引:8,自引:5,他引:3  
In groups of the cooperatively breeding laughing kookaburra(Dacelo novaeguineae), offspring sex varied with the type ofsocial group and with hatch rank. Groups with female helpers,especially if all helpers were female, had male-biased clutchand fledging sex ratios. Groups without female helpers (unassistedpairs or male-only helpers) had female-biased clutch and fledgingsex ratios. Breeding females responded facultatively to increasesin the number of female helpers in their group by producingmore male eggs. These biases may occur if breeding femalestry to limit the number of daughters recruited into their groupbecause unlike male helpers, female helpers depress the breedingsuccess of their parents. Across all nests, two-thirds of first-hatchedyoung were male, two-thirds of second-hatched young were female, and the sex ratio of third-hatched young was even. Hatch ranksex ratios also varied dramatically between different typesof social groups, from 16.7% for second-hatched nestlings ofunassisted pairs to 100% for first-hatched nestlings of groupswith only female helpers. A corollary of the relationship betweenhatch rank and sex was that hatching sex sequences were distributed nonrandomly: all groups avoided hatching a daughter first followedby a son (FM). Sibling competition is aggressive and sometimesfatal. Since females grow to be 15% larger than males the hatchingsequence of sexes could affect nestling growth and mortality.However, an exhaustive analysis found little evidence thatgrowth or survival of males was compromised if hatched aftera sister. The small number of FM sequences may only have occurredin nests that were able to ameliorate any negative consequences.Alternatively, when clutch size is small and fledging successunpredictable because of brood reduction, the preferred broodsex ratio may be contingent on the number of fledged young,making it advantageous to order the sexes in the brood.  相似文献   

16.
Hatching asynchrony can have profound short‐term consequences for offspring, although the long‐term consequences are less well understood. The purpose of this study was to examine the long‐term consequences of hatching asynchrony for offspring fitness in birds. Specifically, we aimed to test the hypothesis that hatching asynchrony increases the sexual attractiveness and fecundity, respectively, of early‐hatched male and female zebra finch, Taeniopygia guttata (Vieillot, 1817) offspring. Mate‐choice trials comparing male nestlings with the same parents, but that were reared in asynchronous or experimentally synchronous broods, revealed no female preference in relation to hatching regime. We did however find strong evidence that, as adults, late‐hatched males were more attractive to females than siblings that had hatched earlier. Meanwhile, we found a weak trend towards early‐hatched females depositing more carotenoids and retinol in the egg yolk than late‐hatched or synchronously hatched females, although there were no differences in terms of clutch characteristics or the deposition of α‐tocopherol or γ‐tocopherol in the egg yolk. Therefore, we found that the beneficial long‐term consequences of hatching asynchrony were sex specific, being accrued by late‐hatched male nestlings and by early‐hatched female nestlings. Consequently, we conclude that the long‐term consequences of hatching asynchrony are more complex than previously realised. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 430–438.  相似文献   

17.
Sex allocation in the sexually monomorphic fairy martin   总被引:1,自引:0,他引:1  
Offspring sex ratios were examined at the population and family level in the sexually monomorphic, socially monogamous fairy martin Petrochelidon ariel at five colony sites over a 4-year period (1993–1996). The sex of 465 nestlings from 169 broods was determined using sex-specific PCR at the CHD locus. In accordance with predicted sex allocation patterns, population sex ratios at hatching and fledging did not differ from parity in any year and the variance in brood sex ratios did not deviate from the binomial distribution. Further, brood sex ratio did not vary with hatching date during the season, brood number, brood size or colony size. The sex ratio of broods with extra-pair young did not differ from those without, while the sex ratio of broods fathered by males that gained extra-pair fertilizations did not differ from broods fathered by other males. Extra-pair chicks were as likely to be male as female. Neither the total number of feeding visits to the brood nor the relative feeding contribution by the sexes varied significantly with brood sex ratio. Brood sex ratios were also unrelated to paternal size, condition and breeding experience or maternal condition and breeding experience. However, contrary to our prediction, brood sex ratio was negatively correlated with maternal size. Generally, these results were consistent with our expectations that brood sex ratios would not vary with environmental factors or parental characteristics, and would not influence the level of parental provisioning. However, the finding that females with longer tarsi produced an excess of daughters is difficult to reconcile with our current understanding of fairy martin life history and breeding ecology.  相似文献   

18.
Bias in sex ratios at hatching and sex specific post hatching mortality in size dimorphic species has been frequently detected, and is usually skewed towards the production and survival of the smaller sex. Since common terns Sterna hirundo show a limited sexual size dimorphism, with males being only about 1–6% larger than females in a few measurements, we would expect to find small or no differences in production and survival of sons and daughters. To test this prediction, we carried out a 2-year observational study on sex ratio variation in common terns at hatching and on sex specific post hatching mortality. Sons and daughters hatched from eggs of similar volume. Post hatching mortality was heavily influenced by hatching sequence. In addition, we detected a sex specific mortality bias towards sons. Overall, hatching sex ratio and sex specific mortality resulted in fledging sex ratios 8% biased towards females. Thus, other reasons than body size may be influencing the costs of rearing sons. Son mortality was not homogeneous between brood sizes, but greater for two-chick broods. Since adults rearing two-chick broods were younger, lighter and bred consistently later than those rearing three-chick broods, it is suggested that lower capacity of two-chick brood parents adversely affected offspring survival of sons. Though not significantly, two-chick broods tended to be female biased at hatching, perhaps to counteract the greater male-biased nestling mortality. Thus, population bias in secondary sex ratio is not limited to strongly size dimorphic species, but species with a slight sexual size dimorphism can also show sex ratio bias through a combination of differential production and mortality of sons and daughters.  相似文献   

19.
A nest box population of Tengmalm's owls (Aegolius funereus) in northern Sweden was studied to investigate the effects of extra food on the sex ratio between hatching and fledging in this sexually size-dimorphic species. The brood size and brood sex ratio of supplementary-fed and control broods were compared. Newly hatched nestlings were blood sampled and sexed by polymerase chain reaction (PCR) amplification of the sex-linked CHD1Z and CHD1W genes. The brood sex ratio at hatching was strongly male biased (65%); this was also the case in broods where all eggs hatched (72%). There was no relationship between hatch order and sex ratio, and hatching sex ratio did not vary significantly with laying date. Brood size decreased between hatching and fledging, but did not differ between fed and control broods at either stage. Brood sex ratio did not differ between hatching and fledging, and fledging sex ratio did not differ between fed and control broods. It was concluded that, at least during the year in which the study was carried out, feeding had no effect on brood reduction, and that male and female nestlings did not show any differential mortality. The mechanisms behind the male-biased sex ratio at hatching, and any possible adaptive reasons for it, are not known.  相似文献   

20.
Laying date is one of the most important determinants of reproductive success and recruitment probability in birds. Late breeders usually fledge fewer chicks than individuals with earlier breeding dates, and fledglings produced late in the season have high mortality rates. Food availability and nestling mass have been evoked as the principal mechanistic links between laying date and offspring survival. Here we suggest that another factor may actually account for the difference in survival rate between early and late offspring: immunocompetence. We predicted that nestlings produced later in the season or in replacement clutches should have lower immune responses when challenged with an antigen, than early nestlings or nestlings produced in first clutches. This hypothesis was tested in a population of magpies (Pica pica), in which we experimentally induced breeding failure in a group of nests and compared the immune response of nestlings in replacement clutches with the immune response of first clutch nestlings. Cellular immune response, as measured by wing web swelling (a correlate of T-lymphocyte production after injection of phytohaemagglutinin-P), significantly decreased with hatching date and was significantly lower in nestlings of replacement clutches. Furthermore, coefficients of intraclutch variation in immune response were higher in nestlings of replacement clutches. This experiment demonstrates an inverse relationship between immune responsiveness and breeding date, and reduced recruitment probability of late nestlings may be a direct consequence of their inability to cope with parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号