首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antigen (Ag)-specific T cells are thought to play a key role in pathogenesis of chronic allergic conjunctivitis (AC) such as atopic keratoconjunctivitis (AKC) and vernal keratoconjunctivitis (VKC). In order to investigate the trafficking of Ag-specific T cells in experimental immune-mediated blepharoconjunctivitis (EC), we established a novel AC model in DO11.10 T cell receptor (TcR) transgenic (Tg) mice. DO11.10 TcR-Tg mice were challenged with eye drops of whole OVA protein, OVA peptide 1-15, 321-335, or 323-339. Their eyes were histologically examined. Conventional proliferation assay was performed against each Ag. Phenotypes of infiltrating cells and kinetics of Ag-specific T cells were investigated by immunohistochemistry. Adoptive transfer of CD4(+) Ag-specific T cells from DO11.10 TcR-Tg to WT mice was performed. The distribution of KJ1-26(+) cells was investigated in recipient mice. The challenge of OVA peptide 323-339 induced infiltration of inflammatory cells in conjunctivae in a dose dependent manner, accompanied by the proliferative responses of splenocytes. Immunohistochemical analysis revealed Agspecific/ non-Ag-specific T cells, macrophages, and eosinophils in conjunctivae. Infiltration of Ag-specific T cells increased 24 hr later. Transfer of CD4(+) cells from DO11.10 TcR-Tg to WT mice induced EC depending on the number of transferred cells. Ag-specific T cells were detected in the conjunctivae and spleens of recipient mice, though its numbers were significantly smaller compared to DO11.10 TcR-Tg mice. The challenge of OVA peptide 323-339 induced EC in DO11.10 TcR-Tg mice without prior sensitization. The response was mediated by CD4(+) Ag-specific T cells. The trafficking of Ag-specific T cells in EC was clearly visualized.  相似文献   

2.
The triggering Ag for inflammatory bowel disease and animal models of colitis is not known, but may include gut flora. Feeding OVA to DO11.10 mice with OVA-specific transgenic (Tg) TCR generates Ag-specific immunoregulatory CD4(+) T cells (Treg) cells. We examined the ability of oral Ag-induced Treg cells to suppress T cell-mediated colitis in mice. SCID-bg mice given DO11.10 CD4(+)CD45RB(high) T cells developed colitis, and cotransferring DO11.10 CD45RB(low)CD4(+) T cells prevented CD4(+)CD45RB(high) T cell-induced colitis in the absence of OVA. The induction and prevention of disease by DO11.10 CD4(+) T cell subsets were associated with an increase in endogenous TCRalpha chain expression on Tg T cells. Feeding OVA to SCID-bg mice reconstituted with DO11.10 CD4(+)CD45RB(high) attenuated the colitis in association with increased TGF-beta and IL-10 secretion, and decreased proliferative responses to both OVA and cecal bacteria Ag. OVA feeding also attenuated colitis in SCID-bg mice reconstituted with a mix of BALB/c and DO11.10 CD45RB(high) T cells, suggesting that OVA-induced Treg cells suppressed BALB/c effector cells. The expression of endogenous non-Tg TCR allowed for DO11.10-derived T cells to respond to enteric flora Ag. Furthermore, feeding OVA-induced Treg cells prevented colitis by inducing tolerance in both OVA-reactive and non-OVA-reactive T cells and by inducing Ag-nonspecific Treg cells. Such a mechanism might allow for Ag-nonspecific modulation of intestinal inflammation in inflammatory bowel disease.  相似文献   

3.
Using the DO11.10 CD4+ TCR-transgenic mouse system, we have recently shown that CD8 blockade promotes the expansion of Ag-specific regulatory CD4+ T cells in mice made tolerant to OVA with anti-CD4 mAb. We now show that CD8 blockade is also critical to promoting responses to nontolerizing Ag in anti-CD4 mAb-treated tolerant mice. Previously published work shows that treatment with anti-CD4 mAb without CD8 blockade induces Ag-specific tolerance. We now show that, in addition to inducing tolerance, anti-CD4 mAb treatment also significantly reduces responsiveness to irrelevant, nontolerizing Ag, and this unresponsiveness is associated with significant apoptosis of the CD4+ T cells. Anti-CD4 mAb-induced apoptosis is inhibited by cotreatment with anti-CD8 mAb and responsiveness to irrelevant Ag is restored, while Ag-specific tolerance is maintained. These data suggest that CD8 blockade promotes responsiveness to nontolerizing Ags in tolerant mice by inhibiting CD4+ T cell apoptosis.  相似文献   

4.
The intestinal immune response to oral Ags involves a complex multistep process. The requirements for optimal intestinal T cell responses in this process are unclear. LFA-1 plays a critical role in peripheral T cell trafficking and activation, however, its role in intestinal immune responses has not been precisely defined. To dissect the role of LFA-1 in intestinal immune responses, we used a system that allows for segregation of T cell migration and activation through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 TCR transgenic mice into wild-type BALB/c mice. We find that wild-type mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate decreases in the numbers of Ag-specific T cells in the intestinal lamina propria after oral Ag administration. We also find that in addition to its role in trafficking to intestinal secondary lymphoid organs, LFA-1 is required for optimal CD4(+) T cell proliferation in vivo upon oral Ag immunization. Furthermore, CD18(-/-) DO11.10 CD4(+) T cells primed in the intestinal secondary lymphoid organs demonstrate defects in up-regulation of the intestinal-specific trafficking molecules, alpha(4)beta(7) and CCR9. Interestingly, the defect in trafficking of CD18(-/-) DO11.10 CD4(+) T cells to the intestinal lamina propria persists even under conditions of equivalent activation and intestinal-tropic differentiation, implicating a role for CD18 in the trafficking of activated T cells into intestinal tissues independent of the earlier defects in the intestinal immune response. This argues for a complex role for CD18 in the early priming checkpoints and ultimately in the trafficking of T cells to the intestinal tissues during an intestinal immune response.  相似文献   

5.
To study the effects of chronic Ag deposition in the airway mucosa on CD4(+) T cell priming and subsequent airway disease, transgenic mice were generated that expressed OVA under the control of the surfactant protein C promoter. CD4 T cells from these mice were tolerant to OVA but this was overcome among spleen CD4 T cells by crossing to OVA-specific DO11.10 TCR-transgenic mice. Lungs from the double-transgenic mice developed lymphocytic infiltrates and modest mucus cell hyperplasia. Infiltrating cells were unaffected by the absence of either Rag-1 or Stat6, although the latter deficiency led to the disappearance of mucus. In the lung of double-transgenic mice, a large number of Ag-specific CD4 T cells expressed CD25 and functioned as regulatory T cells. The CD25(+) CD4 T cells suppressed proliferation of CD25(-) CD4 T cells in vitro and inhibited type 2 immune responses induced by aerosolized Ags in vivo. Despite their ability to suppress allergic type 2 immunity in the airways, however, CD25(+) CD4 regulatory T cells had no effect on the development of bronchial hyperreactivity.  相似文献   

6.
Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4(+)CD25(+) T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4(+)CD25(+) regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA x DO11.10 mice had increased numbers of CD4(+)CD25(+) regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA x DO11.10 mice, T cells expressing endogenous TCR alpha beta chains were CD4(+)CD25(-) T cells, whereas T cells expressing autoreactive TCR were selected as CD4(+)CD25(+) T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA x DO11.10 mice. In contrast, in DO11.10 mice, CD4(+)CD25(+) T cells expressed endogenous TCR alpha beta chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4(+)CD25(+) T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4(+)CD25(+) T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4(+)CD25(-) T cells from autoreactive T cell repertoire.  相似文献   

7.
We tested the hypothesis that immature APC, whose NF-kappaB-signaling pathway and thus maturation was blocked by the proteosome inhibitor benzyloxycarbonyl-isoleucyl-glutamyl(O-tert-butyl)-alanyl-leucinal (PSI), could be a source of Ag-specific regulatory T (Treg) cells. DO11.10 CD4(+) T cells that were incubated with Ag- and PSI-pulsed APC proliferated poorly, produced less IL-2, IFN-gamma, and IL-10 in secondary cultures, and inhibited the response of both naive and memory CD4(+) T cells stimulated by Ag-pulsed APC. The generation of PSI-APC Treg cells required IL-10 production by APC. PSI-APC Treg cell inhibition required cell-cell contact but not IL-10 or TGF-beta. Addition of IL-2 did not reverse, but Ab to CTLA-4 did reverse partially the inhibitory effect. Depletion of CD25(+) T cells before initial culture with PSI-APC did not affect Treg generation. PSI-APC Treg cells expressed high levels of Foxp3, inhibited proliferation of naive DO11.10 T cells in vivo, and abrogated colitis driven by a memory Th1 response to bacterial-associated Ag. We conclude that NF-kappaB-blocked, immature APC are able to induce the differentiation of Treg cells that can function in vitro and in vivo in an Ag-specific manner.  相似文献   

8.
The leukocyte-specific integrin, LFA-1, plays a critical role in trafficking of T cells to both lymphoid and nonlymphoid tissues. However, the role of LFA-1 in T cell activation in vivo has been less well understood. Although there have been reports describing LFA-1-deficient T cell response defects in vivo, due to impaired migration to lymphoid structures and to sites of effector function in the absence of LFA-1, it has been difficult to assess whether T cells also have a specific activation defect in vivo. We examined the role of LFA-1 in CD4(+) T cell activation in vivo by using a system that allows for segregation of the migration and activation defects through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 Ag-specific TCR transgenic mice into wild-type BALB/c mice. We find that in addition to its role in trafficking to peripheral lymph nodes, LFA-1 is required for optimal CD4(+) T cell priming in vivo upon s.c. immunization. CD18(-/-) DO11.10 CD4(+) T cells primed in the lymph nodes demonstrate defects in IL-2 and IFN-gamma production. In addition, recipient mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate a defect in OVA-specific IgG2a production after s.c. immunization. The defect in priming of CD18(-/-) CD4(+) T cells persists even in the presence of proliferating CD18(+/-) CD4(+) T cells and in lymphoid structures to which there is no migration defect. Taken together, these results demonstrate that LFA-1 is required for optimal CD4(+) T cell priming in vivo.  相似文献   

9.
We recently demonstrated that CD1d-restricted NKT cells resident in skin can inhibit CD8 T cell-mediated graft rejection of human papillomavirus E7-expressing skin through an IFN-γ-dependent mechanism. In this study, we examined the role of systemically derived NKT cells in regulating the rejection of skin grafts expressing viral proteins. In lymph nodes draining transplanted skin, Ag-specific CD8 T cell proliferation, cytokine production, and cytotoxic activity were impaired by NKT cells. NKT cell suppression was mediated via CD11c(+) dendritic cells. Inhibition of CD8 T cell function did not require Foxp3(+) regulatory T cells or NKT cell-secreted IFN-γ, IL-10, or IL-17. Thus, following skin grafting or immunization with human papillomavirus-E7 oncoprotein, NKT cells reduce the capacity of draining lymph node-resident APCs to cross-present Ag to CD8 T cell precursors, as evidenced by impaired expansion and differentiation to Ag-specific CD8 T effector cells. Therefore, in the context of viral Ag challenge in the skin, systemic NKT cells limit the capacity for effective priming of adaptive immunity.  相似文献   

10.
During an immune response a small number of rare Ag-specific clones proliferate extensively and decline, leaving a residual population for long-term memory. TCR transgenic (tg) CD4 T cells have been used widely to study the primary and memory response in vivo. We show here that naive TCR tg CD4 T cells from the DO11.10 strain transferred into wild type (wt) BALB/c recipients and not stimulated declined rapidly at the same rate as those primed in vivo by Ag. In the same recipients wt CD4 T cells survived. There was no evidence of an inherent defect in the tg T cells, which survived well when returned to DO11.10 recipients. Surprisingly, wt CD4 T cells declined rapidly in the same DO11.10 hosts. By depleting wt recipients of NK cells or CD8+ cells, the speed of reduction was slowed by half; rapid destruction was prevented completely by combing the two treatments. In contrast, preimmunization accelerated the loss of tg T cells. The results suggested that tg CD4 T cells were actively rejected by both NK and CD8 T cell responses. We consider whether, despite extensive backcrossing, tg T cells may retain genetic material (minor histocompatibility Ags) flanking the construct that compromises their survival in wt recipients.  相似文献   

11.
Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen. We find that CD8(+) DEC-205/CD205(+) DCs, but not the major fraction of CD8(-) DC inhibitory receptor-2 (DCIR2)(+) DCs, induce functional Foxp3(+) Treg from Foxp3(-) precursors in the presence of low doses of Ag but without added TGF-beta. CD8(+)CD205(+) DCs preferentially express TGF-beta, and the induction of Treg by these DCs in vitro is blocked by neutralizing Ab to TGF-beta. In contrast, CD8(-)DCIR2(+) DCs better induce Foxp3(+) Treg when exogenous TGF-beta is supplied. In vivo, CD8(+)CD205(+) DCs likewise preferentially induce Treg from adoptively transferred, Ag-specific DO11.10 RAG(-/-) Foxp3(-)CD4(+) T cells, whereas the CD8(-)DCIR2(+) DCs better stimulate natural Foxp3(+) Treg. These results indicate that a subset of DCs in spleen, a systemic lymphoid organ, is specialized to differentiate peripheral Foxp3(+) Treg, in part through the endogenous formation of TGF-beta. Targeting of Ag to these DCs might be useful for inducing Ag-specific Foxp3(+) Treg for treatment of autoimmune diseases, transplant rejection, and allergy.  相似文献   

12.
Early events in peripheral regulatory T cell induction via the nasal mucosa   总被引:5,自引:0,他引:5  
Nasal application of soluble Ags leads to Ag-specific suppression of systemic immune responses. This tolerance can be transferred to naive mice by CD4(+) regulatory T cells (T(R) cells) from the spleen, but little is known about the induction of mucosal T(R) cells in vivo. To investigate the induction of T(R) cells in the nose-draining cervical lymph node (CLN), CD4(+) T cells from DO11.10 OVA TCR transgenic mice were transferred to BALB/c recipients. Within 48 h after nasal OVA application, CD4(+) DO11.10 T cells in CLN, but not in the peripheral lymph node, had divided. Similarly, nonmucosal (i.m.) OVA application also induced CD4(+) DO11.10 T cells to proliferate in the draining inguinal lymph node (ILN), yet more vigorously and with different kinetics than the CD4(+) DO11.10 T cells in CLN. Functional analysis revealed that only proliferating CD4(+) DO11.10 T cells from CLN, and not ILN, could transfer tolerance to naive recipients. CD4(+) DO11.10 T cells from CLN were phenotypically similar to CD4(+) DO11.10 T cells from ILN, however, in CLN a higher percentage of CD25(+) proliferating CD4(+) DO11.10 T cells were detected compared with ILN. CD25 is not a discriminative marker for mucosal T(R) cells because both CD25(+) and CD25(-) CD4(+) DO11.10 T cells from the CLN could suppress delayed type hypersensitivity responses in adoptive transfer. These findings demonstrate that although striking similarities exist between the differentiation of T(R) and effector T cells, this does not include their function. We are the first to demonstrate that functional T(R) cells, which reside within both CD25(+) and CD25(-) subsets, can be isolated from CLN as early as 3 days after nasal OVA application.  相似文献   

13.
Ag-specific activation of CD4(+) T cells is known to be causative for the cytokine production associated with lung allergy. Chemokine-induced leukocyte recruitment potentially represents a critical early event in Ag-induced lung inflammation. Whether Ag-specific, lung CD4(+) T cell activation is important in lung chemokine production is currently not clear. Using alphabeta-TCR transgenic BALB/c DO11.10 mice, we investigated the ability of Ag-specific CD4(+) T cell activation to induce lung chemokine production and leukocyte recruitment. Within 1 h of exposure of DO11. 10 mice to OVA aerosol, lung mRNA and protein for the neutrophil chemokines KC and macrophage inflammatory protein (MIP)-2 were greatly increased. Accordingly, neutrophils in the airways increased by >50-fold, and KC and MIP-2 proved to be functional because their neutralization significantly reduced airway neutrophilia. CD4(+) T cell activation was critical because CD4(+) but not CD8(+) T cell depletion reduced KC production, which correlated well with the previously observed inhibition of neutrophil influx after CD4(+) T cell depletion. In vitro studies confirmed that OVA-induced KC and MIP-2 production was conditional upon the interaction of CD4(+) T cells with APCs. A likely secondary mediator was TNF-alpha, and a probable source of these chemokines in the lung was alveolar macrophages. Thus, Ag-specific CD4(+) T cell activation in the lung leads to rapid up-regulation of neutrophil chemokines and the recruitment of neutrophils to the site of Ag exposure. This may be a key early event in the pathogenesis of Ag-induced lung inflammation.  相似文献   

14.
Current models suggest that inductive immune responses to enteric Ag are initiated in Peyer's patches (PP) and mesenteric lymph nodes (MLN) followed by migration of activated, memory-like CD4(+) T cells to extralymphoid sites in the intestinal lamina propria (LP). The resultant immune system contains both naive and activated T cells. To examine the differential responses of naive and memory-like T cells to oral Ag, bone marrow chimeras (BMC) were generated. Irradiated BALB/c hosts were reconstituted with a mix of DO11.10 x RAG-1(-/-) and BALB/c bone marrow. In unprimed DO11.10 and BMC models, LP and PP DO11.10 T cells responded to oral Ag with similar kinetics. Responses of activated, memory-like T cells to oral Ag were examined in thymectomized BMC 60 days after i.p. immunization with OVA peptide in Freund's adjuvant (OVA(323-339)/CFA). Results indicate that i.p. OVA(323-339)/CFA generated a high proportion of memory-like CD45RB(low) DO11.10 T cells in peripheral lymphoid (40%) and intestinal LP (70%) tissue. Previously activated DO11.10 T cells in the LP responded to oral Ag earlier and at 50% higher levels compared with memory CD4(+) T cells localized to PP tissue. These data indicate that responses to oral Ag in antigenically naive animals are initiated in PP whereas in Ag-experienced animals LP T cells respond earlier and more vigorously than cells in PP. Taken together, these data suggest that previous activation alters the hierarchy of T cell responses to oral Ag by enhancing the efficiency of LP T cell activation.  相似文献   

15.
The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8(+) T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c(+) cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c(+) cells stimulate Ag-specific naive CD8(+) T cells locally in the CNS and may contribute to immune responses in the brain.  相似文献   

16.
Successful Ag activation of naive T helper cells requires at least two signals consisting of TCR and CD28 on the T cell interacting with MHC II and CD80/CD86, respectively, on APCs. Recent evidence demonstrates that a third signal consisting of proinflammatory cytokines and reactive oxygen species (ROS) produced by the innate immune response is important in arming the adaptive immune response. In an effort to curtail the generation of an Ag-specific T cell response, we targeted the synthesis of innate immune response signals to generate Ag-specific hyporesponsiveness. We have reported that modulation of redox balance with a catalytic antioxidant effectively inhibited the generation of third signal components from the innate immune response (TNF-alpha, IL-1beta, ROS). In this study, we demonstrate that innate immune-derived signals are necessary for adaptive immune effector function and disruption of these signals with in vivo CA treatment conferred Ag-specific hyporesponsiveness in BALB/c, NOD, DO11.10, and BDC-2.5 mice after immunization. Modulating redox balance led to decreased Ag-specific T cell proliferation and IFN-gamma synthesis by diminishing ROS production in the APC, which affected TNF-alpha levels produced by CD4(+) T cells and impairing effector function. These results demonstrate that altering redox status can be effective in T cell-mediated diseases such as autoimmune diabetes to generate Ag-specific immunosuppression because it inhibits the third signal necessary for CD4(+) T cells to transition from expansion to effector function.  相似文献   

17.
The Src family kinase Fyn is expressed in T cells and has been shown to phosphorylate proteins involved in TCR signaling, cytoskeletal reorganization, and IL-4 production. Fyn-deficient mice have greatly decreased numbers of NKT cells and have thymocytes and T cells with compromised responses following Ab crosslinking of their TCRs. Herein we have addressed the role of Fyn in peptide/MHC class II-induced CD4(+) T cell responses. In Fyn-deficient mice, CD4(+) T cells expressing the DO11.10 TCR transgene developed normally, and the number and phenotype of naive and regulatory DO11.10(+)CD4(+) T cells in the periphery were comparable with their wild-type counterparts. Conjugation with chicken OVA peptide 323-339-loaded APCs, and the subsequent proliferation in vitro or in vivo of DO11.10(+) Fyn-deficient CD4(+) T cells, was virtually indistinguishable from the response of DO11.10(+) wild-type CD4(+) T cells. Proliferation of Fyn-deficient T cells was not more dependent on costimulation through CD28. Additionally, we have found that differentiation, in vitro or in vivo, of transgenic CD4(+) Fyn-deficient T cells into IL-4-secreting effector cells was unimpaired, and under certain conditions DO11.10(+) Fyn-deficient CD4(+) T cells were more potent cytokine-producing cells than DO11.10(+) wild-type CD4(+) T cells. These data demonstrate that ablation of Fyn expression does not alter most Ag-driven CD4(+) T cell responses, with the exception of cytokine production, which under some circumstances is enhanced in Fyn-deficient CD4(+) T cells.  相似文献   

18.
Whether IFN-gamma contributes to the per-cell protective capacity of memory CD8(+) T cells against Listeria monocytogenes (LM) has not been formally tested. In this study, we generated LM Ag-specific memory CD8(+) T cells via immunization of wild-type (WT) and IFN-gamma-deficient (gamma knockout (GKO)) mice with LM peptide-coated dendritic cells and compared them phenotypically and functionally. Immunization of WT and GKO mice resulted in memory CD8(+) T cells that were similar in number, functional avidity, TCR repertoire use, and memory phenotype. The protective capacity of memory CD8(+) T cells from immunized WT and GKO mice was evaluated after adoptive transfer of equal numbers of WT or GKO cells into naive BALB/c mice followed by LM challenge. The adoptively transferred CD8(+) T cells from GKO donors exhibited a decreased ability to reduce bacterial numbers in the organs of recipient mice when compared with an equivalent number of Ag-matched WT CD8(+) T cells. This deficiency was most evident early (day 3) after infection if a relatively low infectious dose was used; however, transferring fewer memory CD8(+) T cells or increasing the LM challenge dose revealed a more pronounced defect in protective immunity mediated by the CD8(+) T cells from GKO mice. Our studies identified a decrease in Ag-specific target cell lysis in vivo by CD8(+) T cells from GKO mice as the mechanism for the decreased protective immunity after LM challenge. Further studies suggest that the lack of IFN-gamma production by the Ag-specific CD8 T cells themselves diminishes target cell sensitivity to cytolysis, thereby reducing the lytic potency of IFN-gamma-deficient LM-specific memory CD8(+) T cells.  相似文献   

19.
Viral FLIPs (vFLIPs) interfere with apoptosis signaling by death-domain-containing receptors in the TNFR superfamily (death receptors). In this study, we show that T cell-specific transgenic expression of MC159-vFLIP from the human Molluscum contagiosum virus blocks CD95-induced apoptosis in thymocytes and peripheral T cells, but also impairs postactivation survival of in vitro activated primary T cells despite normal early activation parameters. MC159 vFLIP impairs T cell development to a lesser extent than does Fas-associated death domain protein deficiency or another viral FLIP, E8. In the periphery, vFLIP expression leads to a specific deficit of functional memory CD8(+) T cells. After immunization with a protein Ag, Ag-specific CD8(+) T cells initially proliferate, but quickly disappear and fail to produce Ag-specific memory CD8(+) T cells. Viral FLIP transgenic mice exhibit impaired CD8(+) T cell responses to lymphocytic choriomeningitis virus and Trypanosoma cruzi infections, and a specific defect in CD8(+) T cell recall responses to influenza virus was seen. These results suggest that vFLIP expression in T cells blocks signals necessary for the sustained survival of CD8(+) T cells and the generation of CD8(+) T cell memory. Through this mechanism, vFLIP proteins expressed by T cell tropic viruses may impair the CD8(+) T cell immune responses directed against them.  相似文献   

20.
Rapamycin (RAP), tacrolimus (FK506), cyclosporin A, and glucocorticoids represent modern and classic immunosuppressive agents being used clinically. Although these agents have distinct molecular mechanisms of action and exhibit different immunoregulatory profiles, their direct influences on Ag presentation processes remain relatively unknown. Here we report quantitative and qualitative differences among the above four immunosuppressants in their impact on Ag-specific, bidirectional interaction between dendritic cells (DC) and CD4(+) T cells. In the presence of relevant Ag, bone marrow-derived DC delivered activation signals to CD4(+) T cells isolated from the DO11.10 TCR transgenic mice, leading to clonal expansion; secretion of IFN-gamma, IL-2, and IL-4; and surface expression of CD69. Conversely, DO11.10 T cells delivered maturation signals to DC, leading to IL-6 and IL-12 production and CD40 up-regulation. FK506 (10(-10)-10(-8) M) and cyclosporin A (10(-9)-10(-7) M) each blocked efficiently and uniformly all the changes resulting from intercellular signaling in both DC-->T cell and T cell-->DC directions. Dexamethasone (10(-9)-10(-6) M) suppressed all changes, except for CD69 up-regulation, rather incompletely. Remarkably, RAP (10(-10)-10(-8) M) efficiently inhibited DC-induced T cell proliferation and T cell-mediated CD40 up-regulation by DC without abrogating other changes. Interestingly, T cell-independent DC maturation triggered by LPS stimulation was inhibited by dexamethasone, but not by other agents. Our results demonstrate contrasting pharmacological effects of RAP vs calcineurin inhibitors on Ag presentation, thus forming a conceptual framework for rationale-based selection (and combination) of immunosuppressive agents for clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号