首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Synthesis of new proteins is required to regenerate full length Chlamydomonas flagella after deflagellation. Using gametes, which have a low basal level of protein synthesis, it has been possible to label and detect the synthesis of many flagellar proteins in whole cells. The deflagellation-induced synthesis of the tubulins, dyneins, the flagellar membrane protein, and at least 20 other proteins which co- migrate with proteins in isolated axonemes, can be detected in gamete cytoplasm, and the times of initiation and termination of synthesis for each of the proteins can be studied. The nature of the signal that stimulates the cell to initiate flagellar protein synthesis is unknown. Flagellar regeneration and accompanying pool depletion are not necessary for either the onset or termination of flagellar protein synthesis, because colchicine, which blocks flagellar regeneration, does not change the pattern of proteins synthesized in the cytoplasm after deflagellation or the timing of their synthesis. Moreover, flagellar protein synthesis is stimulated after cells are chemically induced to resorb their flagella, indicating that the act of deflagellation itself is not necessary to stimulate synthesis. Methods were defined for inducing the cells to resorb their flagella by removing Ca++ from the medium and raising the concentration of K+ or Na+. The resorption was reversible and the flagellar components that were resorbed could be re-utilized to assemble flagella in the absence of protein synthesis. This new technique is used in this report to study the control of synthesis and assembly of flagella.  相似文献   

3.
The behaviour of a pool of flagellar precursors, assayed by the ability of cells to regenerate flagella in the absence of de novo protein synthesis, has been examined during organelle morphogenesis in the biflagellate alga Chlamydomonas. The results demonstrate that flagellar elongation can continue even when this pool is apparently empty and suggest that 2 sources of precursors are available to the regenerating flagella: those pre-existing in the cellular pool and those synthesized de novo. Further evidence for this was obtained by subjecting regenerating cells to pulses of cycloheximide. Cells exposed to this drug during the first 60 min post deflagellation formed only half-length (5-mum) flagella, whereas a pulse administered after this point allowed the formation of longer flagella and suggested that some de novo protein synthesis was required for the formation of full-length flagella, although it was not a prerequisite for the initiation of regeneration. In addition, it was found that, subsequent to the removal of the cycloheximide, flagellar regeneration did not recommence immediately, but was delayed for a period of approximately 45 min, irrespective of length of flagella formed prior to drug inhibition. The nature of this cycloheximide-induced delay is unclear and certain alternatives, based on the exhaustion of structural/regulatory components are considered. Although it is not possible to distinguish between these alternatives, tubulin is not the limiting component, since a pool of this protein is present when flagellar elongation is prevented by cycloheximide.  相似文献   

4.
Length control of flagella represents a simple and tractable system to investigate the dynamics of organelle size. Models for flagellar length control in the model organism Chlamydomonas reinhardtii have focused on the length dependence of the intraflagellar transport (IFT) system, which manages the delivery and removal of axonemal subunits at the tip of the flagella. One of these cargoes, tubulin, is the major axonemal subunit, and its frequency of arrival at the tip plays a central role in size control models. However, the mechanisms determining tubulin dynamics at the tip are still poorly understood. We discovered a loss-of-function mutation that leads to shortened flagella and found that this was an allele of a previously described gene, SHF1, whose molecular identity had not been determined. We found that SHF1 encodes a Chlamydomonas orthologue of Crescerin, previously identified as a cilia-specific TOG-domain array protein that can bind tubulin via its TOG domains and increase tubulin polymerization rates. In this mutant, flagellar regeneration occurs with the same initial kinetics as in wild-type cells but plateaus at a shorter length. Using a computational model in which the flagellar microtubules are represented by a differential equation for flagellar length combined with a stochastic model for cytoplasmic microtubule dynamics, we found that our experimental results are best described by a model in which Crescerin/SHF1 binds tubulin dimers in the cytoplasm and transports them into the flagellum. We suggest that this TOG-domain protein is necessary to efficiently and preemptively increase intraflagella tubulin levels to offset decreasing IFT cargo at the tip as flagellar assembly progresses.  相似文献   

5.
Flagellar regeneration after experimental amputation was studied in synchronized axenic cultures of the scaly green flagellateTetraselmis striata (Prasinophyceae). After removal of flagella by mechanical shearing, 95% of the cells regrow all four flagella (incl. the scaly covering) to nearly full length with a linear velocity of 50 nm/min under standard conditions. Flagellar regeneration is independent of photosynthesis (no effect of DCMU; the same regeneration rate in the light or in the dark), but depends on de novo protein synthesis: cycloheximide at a low concentration (0.35 μM) blocks flagellar regeneration reversibly. No pool of flagellar precursors appears to be present throughout the flagellated phase of the cell cycle. A transient pool of flagellar precursors, sufficient to generate 2.5 μm of flagellar length, however, develops during flagellar regeneration. Tunicamycin (2 μg/ml) inhibits flagellar regeneration only after a second flagellar amputation, when flagella reach only one third the length of the control. Flagellar regeneration inT. striata differs considerably from that ofChlamydomonas reinhardtii and represents an excellent model system for the study of synchronous Golgi apparatus (GA) activation, and transport and exocytosis of GA-derived macromolecules (scales).  相似文献   

6.
Protein kinase involved in flagellar-length control   总被引:2,自引:0,他引:2       下载免费PDF全文
During its life cycle, the parasitic protozoon Leishmania mexicana differentiates from a flagellated form, the promastigote, to an amastigote form carrying a rudimentary flagellum. Besides biochemical changes, this process involves a change in overall cell morphology including flagellar shortening. A mitogen-activated protein kinase kinase homologue designated LmxMKK was identified in a homology screening and found to be critically involved in the regulation of flagellar assembly and cell size. LmxMKK is exclusively expressed in the promastigote stage and is likely to be regulated by posttranslational mechanisms such as phosphorylation. A deletion mutant for the single-copy gene revealed motile flagella dramatically reduced in length and lacking the paraflagellar rod, a structure adjacent to the axoneme in kinetoplastid flagella. Moreover, a fraction of the cells showed perturbance of the axonemal structure. Complementation of the deletion mutant with the wild-type gene restored typical promastigote morphology. We propose that LmxMKK influences anterograde intraflagellar transport to maintain flagellar length in Leishmania promastigotes; as such, it is the first protein kinase known to be involved in organellar assembly.  相似文献   

7.
Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length. To date, none of the proteins required for flagellar length control have been identified in any eukaryotic organism. Here, we show that a novel MAP kinase is crucial to enforcing wild-type flagellar length in C. reinhardtii. Null mutants of LF4 [2], a gene encoding a protein with extensive amino acid sequence identity to a mammalian MAP kinase of unknown function, MOK [3], are unable to regulate the length of their flagella. The LF4 protein (LF4p) is localized to the flagella, and in vitro enzyme assays confirm that the protein is a MAP kinase. The long-flagella phenotype of lf4 cells is rescued by transformation with the cloned LF4 gene. The demonstration that a novel MAP kinase helps enforce flagellar length control indicates that a previously unidentified signal transduction pathway controls organelle size in C. reinhardtii.  相似文献   

8.
Cells assemble microns-long filamentous structures from protein monomers that are nanometers in size. These structures are often highly dynamic, yet in order for them to function properly, cells maintain them at a precise length. Here we investigate length-dependent depolymerization as a mechanism of length control. This mechanism has been recently proposed for flagellar length control in the single cell organisms Chlamydomonas and Giardia. Length dependent depolymerization can arise from a concentration gradient of a depolymerizing protein, such as kinesin-13 in Giardia, along the length of the flagellum. Two possible scenarios are considered: a linear and an exponential gradient of depolymerizing proteins. We compute analytically the probability distributions of filament lengths for both scenarios and show how these distributions are controlled by key biochemical parameters through a dimensionless number that we identify. In Chlamydomonas cells, the assembly dynamics of its two flagella are coupled via a shared pool of molecular components that are in limited supply, and so we investigate the effect of a limiting monomer pool on the length distributions. Finally, we compare our calculations to experiments. While the computed mean lengths are consistent with observations, the noise is two orders of magnitude smaller than the observed length fluctuations.  相似文献   

9.
Exposure of the quadriflagellate Polytomella to hydrostatic pressure was shown to result in the internalization of intact flagellar axonemes. During recovery from the pressure treatment the axonemes were disassembled concurrent with flagellar regeneration. When flagella were amputated partial regeneration occurred in the presence of cycloheximide, suggesting the presence of a limiting available pools of flagellar precursors. After a second amputation in the continued presence of cycloheximide little or no regeneration occurred, indicating depletion of the pool. However, if internalized axonemes were available, as well as the precursor pool, full-length flagella regenerated in cycloheximide. When the pool had been depleted and internalized axonemes were present, flagella regenerated to a length equal to the initial length of the internalized axonemes. We conclude that materials resulting from the disassembly of the pressure internalized axonemes are reutilized in regenerating new flagella.  相似文献   

10.
The length of the flagella of Chlamydomonas reinhardtii cells is tightly regulated; both short-flagella and long-flagella mutants have been described. This report characterizes ten long-flagella mutants, including five newly isolated mutants, to determine the number of different loci conferring this phenotype, and to study interactions of mutants at different loci. The mutants, each of which was recessive in heterozygous diploids with wild type, fall into three unlinked complementation groups. One of these defines a new gene, lf3, which maps near the centromere of linkage group I. The flagellar length distributions in populations of each mutant were broad, with the longest flagella measuring four times the length of the longest flagella seen on wild-type cells. Each of the ten mutants had defective flagellar regrowth after amputation. Some of the mutants showed no regrowth within the time required for wild-type cells to regenerate flagella completely. Other mutants had subpopulations with rapid regeneration kinetics, and subpopulations with no observable regeneration. The mutants were each crossed to wild type to form temporary quadriflagellate, dikaryon cells; in each case the long flagella were rapidly shortened in the presence of the wild-type cytoplasm, demonstrating that the mutants were recessive, and that length control could be exerted on already assembled flagella.  相似文献   

11.
Luo M  Cao M  Kan Y  Li G  Snell W  Pan J 《Current biology : CB》2011,21(7):586-591
Flagella and cilia are structurally polarized organelles whose lengths are precisely defined, and alterations in length are related to several human disorders. Intraflagellar transport (IFT) and protein signaling molecules are implicated in specifying flagellar and ciliary length, but evidence has been lacking for a flagellum and cilium length sensor that could participate in active length control or establishment of structural polarity. Previously, we showed that the phosphorylation state of the aurora-like protein kinase CALK in Chlamydomonas is a marker of the absence of flagella. Here we show that CALK phosphorylation state is also a marker for flagellar length. CALK is phosphorylated in cells without flagella, and during flagellar assembly it becomes dephosphorylated. Dephosphorylation is not simply a consequence of initiation of flagellar assembly or of time after experimentally induced flagellar loss, but instead requires flagella to be assembled to a threshold length. Analysis of cells with flagella of varying lengths shows that the threshold length for CALK dephosphorylation is ~6 μm (half length). Studies with short and long flagellar mutants indicate that cells detect absolute rather than relative flagellar length. Our results demonstrate that cells possess a mechanism for translating flagellar length into a posttranslational modification of a known flagellar regulatory protein.  相似文献   

12.
Flagella can be removed from the biflagellate Chlamydomonas and the cells begin to regenerate flagella almost immediately by deceleratory kinetics. Under usual conditions of deflagellation, more than 98% of all flagella are removed. Under less drastic conditions, cells can be selected in which one flagellum is removed and the other left intact. When only one of the two flagella is amputated, the intact flagellum shortens by linear kinetics while the amputated one regenerates. The two flagella attain an equal intermediate length and then approach their initial length at the same rate. A concentration of cycloheximide which inhibits protein synthesis permits less than one-third of each flagellum to form when both flagella are amputated. When only one is amputated in cycloheximide, shortening proceeds normally and the degree of elongation in the amputated flagellum is greater than if both were amputated in the presence of cycloheximide. The shortening process is therefore independent of protein synthesis, and the protein from the shortening flagellum probably enters the pool of precursors available for flagellar formation. Partial regeneration of flagella occurs in concentrations of cycloheximide inhibitory to protein synthesis suggesting that some flagellar precursors are present. Cycloheximide and flagellar pulse-labeling studies indicate that precursor is used during the first part of elongation, is resynthesized at mid-elongation, and approaches its original level as the flagella reach their initial length. Colchicine completely blocks regeneration without affecting protein synthesis, and extended exposure of deflagellated cells to colchicine increases the amount of flagellar growth upon transfer to cycloheximide. When colchicine is applied to cells with only one flagellum removed, shortening continues normally but regeneration is blocked. Therefore, colchicine can be used to separate the processes of shortening and elongation. Radioautographic studies of the growth zone of Chlamydomonas flagella corroborate previous findings that assembly is occurring at the distal end (tip growth) of the organelle.  相似文献   

13.
A new ‘paralyzed’ mutant. OC–10, was isolated in Chlamydomonas reinhardtii Dangeard. OC-10 cannot swim and generally shows very little flagellar movement. However, when OC-10 was demembranated, axonemal motility was reactivated in the presence of adenosine triphosphate (ATP) or adenosine diphosphate (ADP). The beating form of the reactivated axonemes was almost the same as that of the wild-type axonemes. Flagellar regeneration of OC-10 was slower than that of the wild-type. Electron microscopic examination showed no abnormality in OC-10 flagella, but SDS/PAGE revealed that mobility of a flagellar membrane protein was changed and a few bands disappeared in OC-10 flagella, When the mutant was crossed to wild-type to form temporary dikaryon cells with 4 flagella, OC-10 flagella did not regain motility. Tetrad analysis of crosses between OC–10 and wild-type demonstrated a 1:1 segregation on the basis of flagellar motility. From these results, we suppose that OC-10 may be limited in ATP availability inside the flagella, or altered in flagellar membrane proteins important for motility.  相似文献   

14.
A central question in cell biology is how cells determine the size of their organelles. Flagellar length control is a convenient system for studying organelle size regulation. Mechanistic models proposed for flagellar length regulation have been constrained by the assumption that flagella are static structures once they are assembled. However, recent work has shown that flagella are dynamic and are constantly turning over. We have determined that this turnover occurs at the flagellar tips, and that the assembly portion of the turnover is mediated by intraflagellar transport (IFT). Blocking IFT inhibits the incorporation of tubulin at the flagellar tips and causes the flagella to resorb. These results lead to a simple steady-state model for flagellar length regulation by which a balance of assembly and disassembly can effectively regulate flagellar length.  相似文献   

15.
Several studies have indicated that the central pair of microtubules and their associated structures play a significant role in regulating flagellar motility. To begin a molecular analysis of these components we have generated central apparatus-defective mutants in Chlamydomonas reinhardtii using insertional mutagenesis. One paralyzed mutant recovered in our screen, D2, is an allele of a previously identified mutant, pf16. Mutant cells have paralyzed flagella, and the C1 microtubule of the central apparatus is missing in isolated axonemes. We have cloned the wild-type PF16 gene and confirmed its identity by rescuing pf16 mutants upon transformation. The rescued pf16 cells were wild-type in motility and in axonemal ultrastructure. A full-length cDNA clone for PF16 was obtained and sequenced. Database searches using the predicted 566 amino acid sequence of PF16 indicate that the protein contains eight contiguous armadillo repeats. A number of proteins with diverse cellular functions also contain armadillo repeats including pendulin, Rch1, importin, SRP-1, and armadillo. An antibody was raised against a fusion protein expressed from the cloned cDNA. Immunofluorescence labeling of wild-type flagella indicates that the PF16 protein is localized along the length of the flagella while immunogold labeling further localizes the PF16 protein to a single microtubule of the central pair. Based on the localization results and the presence of the armadillo repeats in this protein, we suggest that the PF16 gene product is involved in protein-protein interactions important for C1 central microtubule stability and flagellar motility.  相似文献   

16.
Four long-flagella (LF) genes are important for flagellar length control in Chlamydomonas reinhardtii. Here, we characterize two new null lf3 mutants whose phenotypes are different from previously identified lf3 mutants. These null mutants have unequal-length flagella that assemble more slowly than wild-type flagella, though their flagella can also reach abnormally long lengths. Prominent bulges are found at the distal ends of short, long, and regenerating flagella of these mutants. Analysis of the flagella by electron and immunofluorescence microscopy and by Western blots revealed that the bulges contain intraflagellar transport complexes, a defect reported previously (for review see Cole, D.G., 2003. Traffic. 4:435-442) in a subset of mutants defective in intraflagellar transport. We have cloned the wild-type LF3 gene and characterized a hypomorphic mutant allele of LF3. LF3p is a novel protein located predominantly in the cell body. It cosediments with the product of the LF1 gene in sucrose density gradients, indicating that these proteins may form a functional complex to regulate flagellar length and assembly.  相似文献   

17.
The flagella of Chlamydomonas reinhardi are required for the initiation of mating between opposite mating type gametes. It has been suggested that flagellar length is a crucial factor in a cell's ability to transmit and receive the sexual signals necessary for fusion. Mating type + (mt+) cells of gam-5, a mutant which is characterized by variable length, paralyzed flagella, were mated with wild-type, mt cells. Activation of the mating structures of the gam-5 gametes, and therefore successful signalling, was demonstrated for cells with flagella as short as 1.5 μm (less than 1/6 normal length). Because this mutant displays aberrant axonemal structures, and because various mutants with other defects in axonemal structure are also able to mate, it seems likely that the flagellar membrane may provide the main conduit for gametic sexual signals.  相似文献   

18.
In order to elucidate mechanisms that control flagellar length of mature sperm, we studied in synchronous cell suspension cultures flagellar growth, tubulin pool, and tubulin synthesis in round spermatids of Xenopus laevis and the newt Cynops pyrrhogaster. The average final length of flagella in Xenopus round spermatids was 35 mum, almost the same length as that in mature sperm, whereas in the newt round spermatids, the length was 210 mum, almost half that of mature sperm. Kinetics of flagellar growth showed that the rate and period of flagellar growth in the newt spermatids were two to threefold those in Xenopus spermatids. The tubulin pool size in newt spermatids was estimated to be about 10-fold greater than that in Xenopus spermatids. But even if all of the pool was used for flagellar growth, it could support only about a seventh to a tenth of the flagellar length in mature sperm in either species. Thus, the possibility that the tubulin pool primarily determines flagellar length was excluded. Since the tubulin pool size did not change throughout the culture period, the possibility that the termination of flagellar growth is due to the exhaustion of the tubulin pool was also excluded. Tubulin synthesis declined over the culture period but continued in newt spermatids longer than in Xenopus spermatids. The period of flagellar elongation almost coincided with the period of tubulin synthesis. The amount of rRNA did not decrease, excluding the possibility that the decline of tubulin synthesis was due to cytoplasmic shedding which might result in the loss of ribosomes. Tubulin synthesis and the amount of rRNA in newt spermatids was more than threefold greater than that in Xenopus spermatids, which may explain the difference in growth rates of their flagella.  相似文献   

19.
A backward swimming mutant (RL-10) was isolated from Chlamydomonas reinhardii. In contrast to the wild-type flagellum which usually displays a ciliary type beating pattern, the flagella in the RL-10 cells always propagated such undulating waves as found in sperm flagella. This abnormal beating pattern was maintained after the cell was demembranated by a non-ionic detergent (Nonidet P40) and reactivated with ATP. Reactivated axonemes (demembranated flagella) of the wild-type cells changed the beating pattern from the ciliary type to the flagellar type when the Ca2+ concentration was increased from 10−7 to 10−6 M. However, the RL-10 axonemes did not show such a Ca-dependent change in the beating pattern. Hence the RL-10 flagella might carry defects in the controlling mechanisms of flagellar beating pattern, at sites other than the membrane.  相似文献   

20.
Chlamydomonas reinhardtii has long been used as a model organism in studies of cell motility and flagellar dynamics. The motility of the well-conserved ‘9+2’ axoneme in its flagella remains a subject of immense curiosity. Using high-speed videography and morphological analyses, we have characterized long-flagella mutants (lf1, lf2-1, lf2-5, lf3-2, and lf4) of C. reinhardtii for biophysical parameters such as swimming velocities, waveforms, beat frequencies, and swimming trajectories. These mutants are aberrant in proteins involved in the regulation of flagellar length and bring about a phenotypic increase in this length. Our results reveal that the flagellar beat frequency and swimming velocity are negatively correlated with the length of the flagella. When compared to the wild-type, any increase in the flagellar length reduces both the swimming velocities (by 26–57%) and beat frequencies (by 8–16%). We demonstrate that with no apparent aberrations/ultrastructural deformities in the mutant axonemes, it is this increased length that has a critical role to play in the motion dynamics of C. reinhardtii cells, and, provided there are no significant changes in their flagellar proteome, any increase in this length compromises the swimming velocity either by reduction of the beat frequency or by an alteration in the waveform of the flagella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号