首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isoleucine-deficient mutants of Salmonella typhimurium were isolated. Three groups of mutants can be discerned by their nutritional requirements and enzyme patterns. (i) Mutants which grow with isoleucine alone are devoid of biosynthetic threonine deaminase (TD). (ii) Mutants growing with isoleucine and valine are devoid of transaminase B. (iii) Mutants growing with either isoleucine or threonine have normal levels of TD. However, the sensitivity of this enzyme to feedback inhibition by isoleucine is greatly enhanced. The inhibitory effect of isoleucine can be counterbalanced by high concentrations of threonine. These results indicate that the production of isoleucine in the mutants is restricted to a low level not sufficient to support the growth of the cells. This hypothesis is confirmed by studies with revertants of an isoleucine-threonine mutant. In nine revertants, wild-type properties of TD have been restored. In four revertants, the hypersensitivity of TD is unchanged, but the strains produce a greatly enhanced quantity of threonine, which is excreted into the culture medium. It follows, that hypersensitivity of TD to inhibition by isoleucine is the cause of the nutritional requirement of isoleucine-threonine mutants.  相似文献   

2.
In Escherichia coli, the three branched-chain amino acid activating enzymes appear to be essential for multivalent repression of the isoleucine- and valine-forming enzymes. The results of experiments with a mutant, strain CU18, having an altered threonine deaminase, indicate that free isoleucine and some form of threonine deaminase (the product of the ilvA gene) are also involved in multivalent repression. This strain exhibits abnormally high derepressibility but normal repressibility of its ilv gene products, and its threonine deaminase is inhibited only by high concentrations of isoleucine. In strain CU18, the isoleucine analogue, thiaisoleucine, is incapable of replacing isoleucine in the multivalent repression of the ilv genes, whereas the analogue can fully replace the natural amino acid in repression in other strains examined. The dipeptide, glycyl-leucine, which, like isoleucine, is a heterotropic negative effector of threonine deaminase but is not a substrate for isoleucyl-transfer ribonucleic acid synthetase, can completely prevent the accumulation of threonine deaminase-forming potential during isoleucine starvation in strains with normal threonine deaminases. It can not, however, prevent such accumulation in strain CU18 or in other strains in which threonine deaminase is insensitive to any concentration of isoleucine.  相似文献   

3.
The activities of threonine deaminase, acetohydroxy acid synthetase, acetohydroxy acid reductoisomerase, dihydroxy acid dehydrase, and transaminase B were detected in cell-free extracts of Rhodopseudomonas spheroides. No significant repression or derepression of threonine deaminase activity was observed.  相似文献   

4.
A threonine deaminase susceptible to inhibition by isoleucine was purified over 3,000-fold from extracts of Pseudomonas multivorans, a bacterium able to use threonine or α-ketobutyrate as sole source of carbon and energy. The enzyme was characterized with respect to molecular weight, dissociation to subunits, and apparent affinities for threonine, isoleucine, and several other ligands. Certain features of the enzyme including its reversible dissociation to subunits, its high constitutive activity, its marked stability, and high apparent orders of binding for threonine and isoleucine were unusual compared to those of isoleucine-inhibitable enzymes from other bacteria. These findings suggested some relationship between properties of the enzyme and the ability of P. multivorans to use threonine as sole carbon source. However, mutant studies ruled out a direct role of the enzyme in threonine catabolism and indicated that another enzyme, threonine dehydrogenase, is essential for growth on threonine.  相似文献   

5.
Dormant seeds of cocklebur (Xanthium pennsylvanicum Wallr.) were characterized by the lack of ability to form chlorophyll. Such an inability of cotyledons of the dormant seeds was improved by the application of various factors and reagents which were capable of breaking the dormancy and of increasing cotyledon enlargement. Of these, ethylene, benzyladenine, and high temperature treatments were particularly effective, and, in turn, oxygen enrichment, gibberellic acid, thiourea, carbon doxide, and potassium nitrate were also promotive to the greening of the dormant cotyledons. The effects of benzyladenine, oxygen enrichment, and high temperature were reduced in the presence of absorbents for endogenously evolve carbon dioxide and ethylene. δ-Aminolevulinic acid could not restore their greening ability.  相似文献   

6.
The mutant IP7 of Escherichia coli B requires isoleucine or pyridoxine for growth as a consequence of a mutation in the gene coding for biosynthetic threonine deaminase. The mutation of IP7 was shown to be of the nonsense type by the following data: (1) reversion to isoleucine prototrophy involves the formation of external suppression at a high frequency, as shown by transduction experiments; and (ii) the isoleucine requirement is suppressed by lysogenization with a phage carrying the amber suppressor su-3. Cell extracts of the mutant strain contain a low activity of threonine deaminase. The possibility that this activity is biodegradative was ruled out by kinetic experiments. The mutant threonine deaminase was purified to homogeneity by conventional procedures. The enzyme is a dimer of identical subunits of an approximate molecular weight of 43,000 (Grimminger and Feldner, 1974), whereas the wild-type enzyme is a tetramer of 50,000-dalton subunits (Calhoun et al., 1973; Grimminger et al., 1973). The mutant enzyme is not inhibited by isoleucine and does not bind isoleucine, as shown by equilibrium dialysis experiments. Pyridoxal phosphate enhances the maximum catalytic activity of the mutant enzyme by a factor of five, whereas the wild-type enzyme is not affected. In wild-type and mutant threonine deaminase the ratio of protein subunits and bound pyridoxal phosphate is 2:1. The activation of threonine deaminase from strain IP7 is due to a second coenzyme binding site, as shown by (i) spectrophotometric titration of the enzyme with pyridoxal phosphate and by (ii) measurement the pyridoxal phosphate content of the enzyme after sodium borohydride reduction of the protein. The observation of one pyridoxal phosphate binding site per peptide dimer in the wild-type enzyme and of two binding sites per dimer in the mutant strongly suggests that one of the potential sites in the wild-type enzyme is masked by allosteric effects. The factors responsible for the half-of-the-sites reactivity of the coenzyme sites appear to be nonoperative in the mutant protein.  相似文献   

7.
A mutation, ilvA538, in the gene coding for the biosynthetic L-threonine deaminase of Escherichia coli K-12 has previously been demonstrated to have pleiotropic regulatory effects leading to low and invariant expression of some of the isoleucine-valine biosynthetic enzyme, and altered expression of the branched-chain aminoacyl-tRNA synthetases. Strain PS187, which carries the ilvA538 allele, has a partial growth requirement for L-isoleucine and is characterized by a sensitivity to growth inhibition by L-leucine. The experiments reported here demonstrate that the L-threonine deaminase produced by strain PS187 is hypersensitive to inhibition by the pathway end product L-isoleucine. In addition, L-leucine, which acts at relatively high concentrations in vitro as an inhibitor of L-threonine deaminase from the wild type, is a more potent inhibitor of the activity of the mutant enzyme. Forty-six derivatives of strain PS187 were isolated as spontaneous mutants resistant to the growth-inhibitory effects of L-leucine. Two of these, strains MSR14 and MSR16, produce an L-threonine deaminase that is more resistant than the wild type to L-isoleucine inhibition, and intermediate between the wild type and strain PS187 with respect to L-leucine inhibition. Strains MSR14 and MSR16 produce L-threonine deaminase and dihydroxyacid dehydrase, the ilvD gene product, at the low levels characteristic of the parent strain. Other L-leucine-resistant derivatives of strain PS187 produce higher levels of the feedback-hypersensitive L-threonine deaminase. Thus, the sensitivity to growth inhibition by L-leucine observed with strain PS187 appears to be related both to the hypersensitivity of L-threonine deaminase to inhibition of catalytic activity and to the low level of ilv gene expression. The results reported here indicated that L-threonine deaminase is structurally altered in strain PS187, and thus provide further support for the proposal that L-threonine deaminase participates as a genetic regulatory element for the expression of the branched-chain amino acid biosynthetic enzymes.  相似文献   

8.
In this work we investigate by computational means the behavior of two orthologous bacterial proteins, a mesophilic and a thermophilic tetrameric malate dehydrogenase (MalDH), at different temperatures. Namely, we quantify how protein mechanical rigidity at different length- and time-scales correlates to protein thermophilicity as commonly believed. In particular by using a clustering analysis strategy to explore the conformational space of the folded proteins, we show that at ambient conditions and at the molecular length-scale the thermophilic variant is indeed more rigid that the mesophilic one. This rigidification is the result of more efficient inter-domain interactions, the strength of which is further quantified via ad hoc free energy calculations. When considered isolated, the thermophilic domain is indeed more flexible than the respective mesophilic one. Upon oligomerization, the induced stiffening of the thermophilic protein propagates from the interface to the active site where the loop, controlling the access to the catalytic pocket, anchors down via an extended network of ion-pairs. On the contrary in the mesophilic tetramer the loop is highly mobile. Simulations at high temperature, could not re-activate the mobility of the loop in the thermophile. This finding opens questions on the similarities of the binding processes for these two homologues at their optimal working temperature and suggests for the thermophilic variant a possible cooperative role of cofactor/substrate.  相似文献   

9.
Transregulation of the epidermal growth factor receptor (EGFR) by protein kinase C (PKC) serves as a model for heterologous desensitization of receptor tyrosine kinases, but the underlying mechanism remained unknown. By using c-Cbl-induced ubiquitination of EGFR as a marker for transfer from early to late endosomes, we provide evidence that PKC can inhibit this process. In parallel, receptor down-regulation and degradation are significantly reduced. The inhibitory effects of PKC are mediated by a single threonine residue (threonine 654) of EGFR, which serves as a major PKC phosphorylation site. Biochemical and morphological analyses indicate that threonine-phosphorylated EGFR molecules undergo normal internalization, but instead of sorting to lysosomal degradation, they recycle back to the cell surface. In conclusion, by sorting EGFR to the recycling endosome, heterologous desensitization restrains ligand-induced down-regulation of EGFR.  相似文献   

10.
Permanent nerve transection of the adult rat sciatic nerve forces Schwann cells in the distal nerve segment from a myelin-maintaining to a quiescent state. This transition was followed by serial morphometric evaluation of the percentage fascicular area having myelin (myelin percent of area) in transverse sections of the distal nerve segment and revealed a rapid decline from a normal value of 36.6% to 3.2% by 14 days for the sciatic nerve to less than 1.0% throughout the remaining time course (up to 105 days). No evidence of axonal reentry into the distal nerve segment or new myelin formation was observed at times under 70 days. In some of the distal nerve segments at 70, 90, and 105 days, new myelinated fibers were observed that usually consisted of only a few myelinated fibers at the periphery and in the worst case amounted to 1.6% (myelin percent of area). Radioactive precursor incorporation of [3H]mannose into endoneurial slices at 4 and 7 days after transection revealed two species of the major myelin glycoprotein, P0, with Mr of 28,500 and 27,700. By 14 days after nerve transection, only the 27,700 Mr species remained. Incorporation of [3H]mannose into the 27,700 Mr species increased progressively to 35 days after transection and then began to decline at 70 and 105 days. Alterations in the oligosaccharide structure of this down-regulated myelin glycoprotein accounted for the progressive increase in mannose incorporation. Lectin affinity chromatography of pronase-digested P0 glycopeptides on concanavalin A-Sepharose revealed that the 28,500 Mr species of P0 had the complex-type oligosaccharide as the predominant oligosaccharide structure (92%). In contrast, the high mannose-type oligosaccharide was the predominate structure for the 27,700 Mr form, which increased to 70% of the total radioactivity by 35 days after nerve transection. Since the biosynthesis of the complex-type oligosaccharide chains on glycoproteins involves high mannose-type intermediates, the mechanism of down-regulation in the biosynthesis of this major myelin glycoprotein, therefore, results in a biosynthetic switch from the complex-type oligosaccharide structure as an end product to the predominantly high mannose-type oligosaccharide structure as a biosynthetic intermediate. This biosynthetic switch occurs gradually between 7 and 14 days after nerve transection and likely reflects a decreased rate of processing through the Golgi apparatus. It remains to be determined if the high mannose-type oligosaccharide chain on P0 can undergo additional processing steps in this permanent nerve transection model.  相似文献   

11.
12.
An alternative method for the conversion of cheese whey lactose into ethanol has been demonstrated. With the help of continuous-culture technology, a catabolite repression-resistant mutant of Saccharomyces cerevisiae completely fermented equimolar mixtures of glucose and galactose into ethanol. The first step in this process was a computer-controlled fed-batch operation based on the carbon dioxide evolution rate of the culture. In the absence of inhibitory ethanol concentrations, this step allowed us to obtain high biomass concentrations before continuous fermentation. The continuous anaerobic process successfully incorporated a cell-recycle system to optimize the fermentor productivity. Under conditions permitting a low residual sugar concentration (≤1%), maximum productivity (13.6 g liter−1 h−1) was gained from 15% substrate in the continuous feed at a dilution rate of 0.2 h−1. Complete fermentation of highly concentrated feed solutions (20%) was also demonstrated, but only with greatly diminished fermentor productivity (5.5 g liter−1 h−1).  相似文献   

13.
The membrane-bound acetylcholinesterase (AChE) from the electric organ of Torpedo marmorata was solubilized by Triton X-100 or by treatment with proteinase K and purified to apparent homogeneity by affinity chromatography. Although the two forms differed only slightly in their subunit molecular weight (66,000 and 65,000 daltons, respectively), considerable differences existed between native and digested detergent-soluble AChE. The native enzyme sedimented at 6.5 S in the presence of Triton X-100 and formed aggregates in the absence of detergent. The digested enzyme sedimented at 7.5 S in the absence and in the presence of detergent. In contrast to the detergent-solubilized AChE, the proteolytically derived form neither bound detergent nor required amphiphilic molecules for the expression of catalytic activity. This led to the conclusion that limited digestion of detergent-soluble AChE results in the removal of a small hydrophobic peptide which in vivo is responsible for anchoring the protein to the lipid bilayer.  相似文献   

14.
Restoring Stream Ecosystems: Lessons from a Midwestern State   总被引:3,自引:0,他引:3  
Reach‐scale stream restorations are becoming a common approach to repair degraded streams, but the effectiveness of these projects is rarely evaluated or reported. We surveyed governmental, private, and nonprofit organizations in the state of Indiana to determine the frequency and nature of reach‐scale stream restorations in this midwestern U.S. state. For 10 attempted restorations in Indiana, questionnaires and on‐site assessments were used to better evaluate current designs for restoring stream ecosystems. At each restoration site, habitat and water quality were evaluated in restored and unrestored reaches. Our surveys identified commonalities across all restorations, including the type of restoration, project goals, structures installed, and level of monitoring conducted. In general, most restorations were described as stream‐relocation projects that combined riparian and in‐stream enhancements. Fewer than half of the restorations conducted pre‐ or post‐restoration monitoring, and most monitoring involved evaluations of riparian vegetation rather than aquatic variables. On‐site assessments revealed that restored reaches had significantly lower stream widths and greater depths than did upstream unrestored reaches, but riparian canopy cover often was lower in restored than in unrestored reaches. This study provides basic information on midwestern restoration strategies, which is needed to identify strengths and weaknesses in current practices and to better inform future stream restorations.  相似文献   

15.
16.
Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the 1H/13C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. 13C and 1H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state.  相似文献   

17.
18.
alpha-Isopropylmalate synthase, the first specific enzyme in leucine biosynthesis, was purified approximately 100-fold from extracts of Saccharomyces sp. (strain 60615), the most effective step being specific elution with the feedback inhibitor leucine from a hydroxyapatite column. In the early steps of purification, special care was taken to protect the synthase against proteolytic activities. The apparent molecular weight of the enzyme as determined from gel filtration on a calibrated column was 137,000 in the absence and 121,000 in the presence of leucine. Inhibition by leucine was specific and strongly pH-dependent, with the leucine concentration necessary for half-maximal inhibition increasing about 10-fold as the pH increased from 7.5 to 8.5. Within this pH range, catalytic activity remained almost unchanged. The apparent K(m) values for the two substrates were found to be 16 mum for alpha-ketoisovalerate and 9 mum for acetyl-coenzyme A. K(+) was required for full activity, the apparent K(a) value being 2 mm. Leucine inhibition was of the mixed type, resulting in decreased V(max) and increased apparent K(m) values forboth substrates. Whereas no cooperative effects were observed with either substrate, positive cooperativity was seen with leucine in the presence of saturating substrate concentrations. Leucine and, to a lesser extent, alpha-ketoisovalerate stabilized the purified enzyme against heat-inactivation. The presence of acetyl-coenzyme A, on the other hand, accelerated the inactivation. In subsequent experiments, coenzyme A was recognized as the actual inactivating ligand, being effective even at lower temperatures and in concentrations which were estimated to be in the range of the enzyme concentration.  相似文献   

19.
To prevent dihydroxyacetone (DHA) by-production during glyceric acid (GA) production from glycerol using Gluconobacter frateurii, we used a G. frateurii THD32 mutant, ΔsldA, in which the glycerol dehydrogenase subunit-encoding gene (sldA) was disrupted, but ΔsldA grew much more slowly than the wild type, growth starting after a lag of 3 d under the same culture conditions. The addition of 1% w/v D-sorbitol to the medium improved both the growth and the GA productivity of the mutant, and ΔsldA produced 89.1 g/l GA during 4 d of incubation without DHA accumulation.  相似文献   

20.
R. A. Fisher and H. J. Muller argued in the 1930s that a major evolutionary advantage of recombination is that it allows favorable mutations to be combined within an individual even when they first appear in different individuals. This effect is evaluated in a two-locus, two-allele model by calculating the average waiting time until a new genotypic combination first appears in a haploid population. Three approximations are developed and compared with Monte Carlo simulations of the Wright–Fisher process of random genetic drift in a finite population. First, a crude method, based on the deterministic accumulation of single mutants, produces a waiting time of 1/with no recombination and 1/with recombination between the two loci, whereμis the mutation rate,Nis the haploid population size, andRis the recombination rate. Second, the waiting time is calculated as the expected value of a heterogeneous geometric distribution obtained from a branching process approximation. This gives accurate estimates forlarge. The estimates for small values ofare considerably lower than the simulated values. Finally, diffusion analysis of the Wright–Fisher process provides accurate estimates forsmall, and the time scales of the diffusion process show a difference betweenR=0 and forR?0 of the same order of magnitude as seen in the deterministic analysis. In the absence of recombination, accurate approximations to the waiting time are obtained by using the branching process for highand the diffusion approximation for low. For lowthe waiting time is well approximated by 1/. WithR?0, the following dependence onis observed: For>1 the waiting time is virtually independent of recombination and is well described by the branching process approximation. For≈ the waiting time is well described by a simplified diffusion approximation that assumes symmetry in the frequencies of single mutants. For?1 the waiting time is well described by the diffusion approximation allowing asymmetry in the frequencies of single mutants. Recombination lowers the waiting time until a new genotypic combination first appears, but the effect is small compared to that of the mutation rate and population size. For large, recombination has a negligible effect, and its effect is strongest for small, in which case the waiting time approaches a fixed fraction of the waiting time forR=0. Free recombination lowers the waiting time to about 45% of the waiting time for absolute linkage for small. Selection has little effect on the importance of recombination in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号