首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Crithidia fasciculata RNH1 gene encodes an RNase H, an enzyme that specifically degrades the RNA strand of RNA–DNA hybrids. The RNH1 gene is contained within an open reading frame (ORF) predicted to encode a protein of 53.7 kDa. Previous work has shown that RNH1 expresses two proteins: a 38 kDa protein and a 45 kDa protein which is enriched in kinetoplast extracts. Epitope tagging of the C-terminus of the RNH1 gene results in localization of the protein to both the kinetoplast and the nucleus. Translation of the ORF beginning at the second in-frame methionine codon predicts a protein of 38 kDa. Insertion of two tandem stop codons between the first ATG codon and the second in-frame ATG codon of the ORF results in expression of only the 38 kDa protein and the protein localizes specifically to the nucleus. Mutation of the second methionine codon to a valine codon prevents expression of the 38 kDa protein and results in exclusive production of the 45 kDa protein and localization of the protein only in the kinetoplast. These results suggest that the kinetoplast enzyme results from processing of the full-length 53.7 kDa protein. The nuclear enzyme appears to result from translation initiation at the second in-frame ATG codon. This is the first example in trypanosomatids of the production of nuclear and mitochondrial isoforms of a protein from a single gene and is the only eukaryotic gene in the RNase HI gene family shown to encode a mitochondrial RNase H.  相似文献   

2.
The molecular cloning and nucleotide sequence of the cDNA for human Cu/Zn superoxide dismutase (SOD) is reported. The tacI promoter has been used to direct the synthesis in E. coli of this SOD which is soluble, stable, and of normal specific activity. The N-terminal methionine is removed from this protein. A construction with a ribosome binding site identical to that of the lacz gene 5' of the initiator methionine codon, resulted in low levels of SOD. An in vitro mutagenesis procedure was used to randomize the four nucleotides preceding the initiator methionine codon and the silent third positions of the codons specifying the second and third amino acids. Analysis of a sample of 500 clones showed that ca. 25 clones synthesised 5% or more of soluble cell protein as SOD. The nucleotide sequences of high level expressors showed a predominance of A and T residues in the variable positions 5' of the initiator methionine codon. An SOD mutant (ala4----gln) was discovered during the sequencing and shown to lack dismutation activity. Secondary structure predictions for the 5' regions of the mRNAs from high and low level expressors support the hypothesis that initiation of translation is much reduced if part of the region complementary to 16s rRNA is base paired in a stem structure.  相似文献   

3.
A K Jaiswal 《Biochemistry》1991,30(44):10647-10653
  相似文献   

4.
CuZn superoxide dismutase is a highly stable dimer of identical subunits with a combined molecular mass of 32,000 daltons. Two human superoxide dismutase genes have been joined in the same translational reading frame, using spacers of different lengths, to encode single chain proteins consisting of two identical human superoxide dismutase subunits. The first construct encodes two directly linked subunits; the terminal glutamine codon of the first gene was changed to a methionine codon and followed immediately by the second gene. The second construct encodes two subunits linked by a 19-amino-acid human immunoglobulin IgA1 hinge sequence. Both constructs produce high levels of catalytically active superoxide dismutase when expressed in Escherichia coli. The protein containing the IgA1 hinge sequence forms polymers up to 750,000 in molecular weight, which are linked together noncovalently by the hydrophobic bonding of the dimer interface. The polymers are soluble, thermostable, and of near normal specific activity. Site-directed in vitro mutagenesis was used to inactivate one of the two human superoxide dismutase subunits. The resulting human superoxide dismutase polymers have approximately 50% activity, thus confirming that the products of both genes are catalytically active. Large amounts of individual polymeric forms have been purified from recombinant yeast and tested for serum stability in rats. The serum half-life is approximately 7 min for both the two-chain wild type human superoxide dismutase dimer (Mr 32,000) and the single chain molecule consisting of a human superoxide dismutase dimer covalently linked by the immunoglobulin hinge region (Mr 34,000), whereas the higher molecular weight polymers (Mr greater than or equal to 68,000) all have half-lives of approximately 145 min.  相似文献   

5.
6.
cDNA clones encoding three classes of human actins have been isolated and characterized. The first two classes (gamma and beta, cytoplasmic actins) were obtained from a cDNA library constructed from simian virus 40-transformed human fibroblast mRNA, and the third class (alpha, muscle actin) was obtained from a cDNA library constructed from adult human muscle mRNA. A new approach was developed to enrich for full-length cDNAs. The human fibroblast cDNA plasmid library was linearized with restriction enzymes that did not cut the inserts of interest; it was then size-fractionated on gels, and the chimeric molecules of optimal length were selected for retransformation of bacteria. When the resulting clones were screened for actin-coding sequences it was found that some full-length cDNAs were enriched as much as 50- to 100-fold relative to the original frequency of full-length clones in the total library. Two types of clones were distinguished. One of these clones encodes gamma actin and contains 100 base pairs of 5' untranslated region, the entire protein coding region, and the 3' untranslated region. The second class encodes beta actin, and the longest such clone contains 45 base pairs of 5' untranslated region plus the remainder of the mRNA extending to the polyadenylic acid tail. A third class, obtained from the human muscle cDNA library, encodes alpha actin and contains 100 base pairs of 5' untranslated region, the entire coding region, and the 3' untranslated region. Analysis of the DNA sequences of the 5' end of the clones demonstrated that although beta- and gamma-actin genes start with a methionine codon (MET-Asp-Asp-Asp and MET-Glu-Glu-Glu, respectively), the alpha-actin gene starts with a methionine codon followed by a cysteine codon (MET-CYS-Asp-Glu-Asp-Glu). Since no known actin proteins start with a cysteine, it is likely that post-translational removal of cysteine in addition to methionine accompanies alpha-actin synthesis but not beta- and gamma-actin synthesis. This observation has interesting implications both for actin function and actin gene regulation and evolution.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
I M Fearnley  J E Walker 《Biochemistry》1987,26(25):8247-8251
The bovine mitochondrial gene products ND2 and ND4, components of NADH dehydrogenase, have been purified from a chloroform/methanol extract of mitochondrial membranes, and the human mitochondrial gene products ND2 and cytochrome b have been obtained by similar procedures. They have been identified by comparison of their amino-terminal protein sequences with those predicted from DNA sequences of bovine and human mitochondrial DNA. All of the proteins have methionine as their amino-terminal residue. In bovine ND2, this residue is encoded by the "universal" isoleucine codon AUA, and the sequences of human cytochrome b and bovine ND2 demonstrate that AUA also encodes methionine in the elongation step of mitochondrial protein synthesis. In human ND2, the amino-terminal methionine is encoded by AUU, which, as in the "universal" genetic code, is also used as an isoleucine codon in elongation. Thus, AUU has a dual coding function which is dependent upon its context.  相似文献   

15.
16.
To investigate the genetic basis of drug resistance in human malaria parasites, we have sequenced the entire dihydrofolate reductase thymidylate synthetase DHFR-TS bifunctional gene from the highly pyrimethamine-resistant K1 isolate of Plasmodium falciparum. The protein is predicted to consist of 607 amino acids (aa), (71,685 Da), with an N-terminal methionine encoded by the second start codon of the open reading frame. Compared to the sequence from drug-sensitive parasites, there are two nucleotide changes in the coding region which bring about a substitution of Arg for Cys at aa position 59 and Asn for Thr at aa position 108. Both changes occur in regions of the DHFR domain involved in inhibitor and cofactor binding and are hence strongly implicated in drug resistance. The gene is present as a single copy in both K1 and drug-sensitive FCR3 isolates, and is assigned to chromosome 4. Codon usage follows the pattern observed in that of malarial surface antigen genes, with the exception fo codons corresponding to Val and Pro. The Asn and Lys contents of the predicted protein are exceptionally high, these residues being particularly concentrated in the DHFR and junction domains.  相似文献   

17.
18.
Embryogenesis in placental mammals is sustained by exquisite interplay between the embryo proper and placenta. UTF1 is a developmentally regulated gene expressed in both cell lineages. Here, we analyzed the consequence of loss of the UTF1 gene during mouse development. We found that homozygous UTF1 mutant newborn mice were significantly smaller than wild-type or heterozygous mutant mice, suggesting that placental insufficiency caused by the loss of UTF1 expression in extra-embryonic ectodermal cells at least in part contributed to this phenotype. We also found that the effects of loss of UTF1 expression in embryonic stem cells on their pluripotency were very subtle. Genome structure and sequence comparisons revealed that the UTF1 gene exists only in placental mammals. Our analyses of a family of genes with homology to UTF1 revealed a possible mechanism by which placental mammals have evolved the UTF1 genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号