首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparan sulfates (HS) play an important role in the control of cell growth and differentiation by virtue of their ability to modulate the activities of heparin-binding growth factors, an issue that is particularly well studied for fibroblast growth factors (FGFs). HS/heparin co-ordinate the interaction of FGFs with their receptors (FGFRs) and are thought to play a critical role in receptor dimerization. Biochemical and crystallographic studies, conducted mainly with FGF-2 or FGF-1 and FGF receptors 1 and 2, suggests that an octasaccharide is the minimal length required for FGF- and FGFR-induced dimerization and subsequent activation. In addition, 6-O-sulfate groups are thought to be essential for binding of HS to FGFR and for receptor dimerization. We show here that oligosaccharides shorter than 8 sugar units support activation of FGFR2 IIIb by FGF-1 and interaction of FGFR4 with FGF-1. In contrast, only relatively long oligosaccharides supported receptor binding and activation in the FGF-1.FGFR1 or FGF-7.FGFR2 IIIb setting. In addition, both 6-O- and 2-O-desulfated heparin activated FGF-1 signaling via FGFR2 IIIb, whereas neither one stimulated FGF-1 signaling via FGFR1 or FGF-7 via FGFR2 IIIb. These findings indicate that the structure of HS required for activating FGFs is dictated by the specific FGF and FGFR combination. These different requirements may reflect the differences in the mode by which a given FGFR interacts with the various FGFs.  相似文献   

2.
Epithelial cells, which express FGFR2IIIb, bind and respond to FGF-1, FGF-7 and FGF-10, but not FGF-2. Stromal cells, which bind and respond to FGF-1 and FGF-2, but not FGF-7 and FGF-10, express FGFR2IIIc or FGFR1IIIc. Here we show that when both isolated FGFR2betaIIIb and FGFR2betaIIIc or their common Ig module II are allowed to affinity select heparin from a mixture, the resultant binary complexes bound FGF-1, FGF-2, and FGF-7 with nearly equal affinity. In addition, FGF-2 and FGF-7 bound to both heparin-Ig module IIIb and IIIc complexes, but FGF-1 bound to neither Ig module III. The results show that in isolation both Ig modules II and III of FGFR2 can interact with heparin and that each exhibits a binding site for FGF. We suggest that the specificity of FGFR2IIIb and FGFR2IIIc is dependent on the cell membrane environment and heparin/heparan sulfate. Ig modules II and III cooperate both within monomers and across dimers with cellular heparan sulfates to confer cell type-dependent specificity of the FGFR complex for FGF.  相似文献   

3.
Summary Fibroblast growth factor-7 (FGF-7) and a specific splice variant of the FGF tyrosine kinase receptor family (FGFR2IIIb) constitute a paracrine signaling system from stroma to epithelium. Different effects of the manipulation of cellular heparan sulfates and heparin on activities of FGF-7 relative to FGF-1 in epithelial cells suggest that pericellular heparan sulfates may regulate the activity of FGF-7 by a different mechanism than other FGFs. In this report, we employ the heparan sulfate-binding protein, protamine sulfate, to reversibly block cellular heparan sulfates. Protamine sulfate, which does not bind significantly to FGF-7 or FGFR2IIIb, inhibited FGF-7 activities, but not those of epidermal growth factor. The inhibition was overcome by increasing the concentrations of FGF-7 or heparin. Heparin was essential for binding of FGF-7 to recombinant FGFR2IIIb expressed in insect cells or FGFR2IIIb purified away from cell products. These results suggest that, similar to other FGF polypeptides, heparan sulfate within the pericellular matrix is required for activity of FGF-7. Differences in response to heparin and alterations in the BULK heparan sulfate content of cells likely reflect FGF-specific differences in the cellular repertoire of multivalent heparan sulfate chains required for assembly and activation of the FGF signal transduction complex.  相似文献   

4.
Fibroblast growth factor (FGF)-10, a homologue of FGF-7, is expressed significantly in normal rat prostate tissue, well differentiated rat prostate tumors with an epithelial and stromal compartment and only in derived prostate stromal cells in culture. Similar to FGF-7, recombinant rat FGF-10 was a specific mitogen for prostate epithelial cells. In contrast to FGF-7 which is widely expressed among stromal cells in tissues, the expression of FGF-10 correlated with the presence of stromal cells of muscle origin. Radioreceptor binding assays and covalent cross-linking analysis revealed that FGF-10 binds with an affinity equal to FGF-7 to resident epithelial cell receptor, FGFR2IIIb, but unlike FGF-7 also binds the IIIb splice variant of FGFR1. Analysis of mRNA expression by RNase protection revealed that, similar to FGF-7, the expression of FGF-10 was responsive to androgen in stromal cells from normal prostate and non-malignant differentiated tumors. Although FGF-10 cDNA exhibits a signal sequence for secretion, cultured stromal cells exhibit strictly a cell-associated FGF-10 antigen that correlates with an alternately translated intracellular isoform. FGF-10 requires 1.4 times higher NaCl for elution from immobilized heparin than does FGF-7 and binds to four times the number of sites on the pericellular matrix of epithelial cells. The results show that prostate stromal cell-derived FGF-10, like FGF-7, exhibits the properties of an andromedin which may indirectly mediate control of epithelial cell growth and function by androgen. Although FGF-10 and FGF-7 bind and activate the same resident epithelial cell receptor (FGFR2IIIb), differences in cell type of origin, compartmentation by alternate translation, the affinity for FGFR1IIIb, and access to FGFR by differential interaction with pericellular matrix heparan sulfate suggest they may play both independent and compensatory roles in prostate homeostasis.  相似文献   

5.
Heparin potentiates the mitogenic activity of FGF-1 by increasing the affinity for its receptor and by extending its biological half-life. During the course of labeling human FGF-1 with Na(125)I and chloramine T, it was observed that the protein lost its ability to bind to heparin. In contrast, bovine FGF-1 retained its heparin affinity even after iodination. To localize the region responsible for the lost heparin affinity, chimeric FGF-1 proteins were constructed from human and bovine FGF-1 expression constructs and tested for their heparin affinity after iodination. The results showed that the C-terminal region of human FGF-1 was responsible for the loss of heparin affinity. This region harbors a single tyrosine residue in human FGF-1 in contrast to a phenylalanine at this position in bovine FGF-1. Mutating this tyrosine residue in the human FGF-1 sequence to phenylalanine did not restore the heparin affinity of the iodinated protein. Likewise, changing the phenylalanine to tyrosine in the bovine FGF-1 did not reduce the ability of the iodinated protein to bind to heparin. In contrast, a mutant human FGF-1 that has cysteine-131 replaced with serine (C131S) was able to bind to heparin even after iodination while bovine FGF-1 (S131C) lost its binding affinity to heparin upon iodination. In addition, the human FGF-1 C131S mutant showed a decrease in homodimer formation when exposed to CuCl(2). Molecular modeling showed that the heparin-binding domain of FGF-1 includes cysteine-131 and that cysteine-131, upon oxidation to cysteic acid during the iodination procedures, would interact with lysine-126 and lysine-132. This interaction alters the conformation of the basic residues such that they no longer bind to heparin.  相似文献   

6.
Glycosaminoglycans have been implicated in the binding and activation of a variety of growth factors, cytokines, and chemokines. In this way, glycosaminoglycans are thought to participate in events such as development and wound repair. In particular, heparin and heparan sulfate have been well studied, and specific aspects of their structure dictate their participation in a variety of activities. In contrast, although dermatan sulfate participates in many of the same biological processes as heparin and heparan sulfate, the interactions of dermatan sulfate have been less well studied. Dermatan sulfate is abundant in the wound environment and binds and activates growth factors such as fibroblast growth factor-2 (FGF-2) and FGF-7, which are present during the wound repair process. To determine the minimum size and sulfation content of active dermatan sulfate oligosaccharides, dermatan sulfate was first digested and then separated by size exclusion high pressure liquid chromatography, and the activity to facilitate FGF-2 and FGF-7 was assayed by the cellular proliferation of cell lines expressing FGFR1 or FGFR2 IIIb. The minimum size required for the activation of FGF-2 was an octasaccharide and for FGF-7 a decasaccharide. Active fractions were rich in monosulfated, primarily 4-O-sulfated, disaccharides and iduronic acid. Increasing the sulfation to primarily 2/4-O-sulfated and 2/6-O-sulfated disaccharides did not increase activity. Cell proliferation decreased or was abolished with higher sulfated dermatan sulfate preparations. This indicated a preference for specific dermatan sulfate oligosaccharides capable of promoting FGF-2- and FGF-7-dependent cell proliferation. These data identify critical oligosaccharides that promote specific members of the FGF family that are important for wound repair and angiogenesis.  相似文献   

7.
FGF-7 is induced after injury and induces the proliferation of keratinocytes. Like most members of the FGF family, the activity of FGF-7 is strongly influenced by binding to heparin, but this glycosaminoglycan is absent on keratinocyte cell surfaces and minimally present in the wound environment. In this investigation we compared the relative activity of heparan sulfate and chondroitin sulfate B (dermatan sulfate), glycosaminoglycans that are present in wounds. A lymphoid cell line (BaF/KGFR) containing the FGF-7 receptor (FGFR2 IIIb) was treated with FGF-7 and with various glycosaminoglycans. FGF-7 did not support cell proliferation in the absence of glycosaminoglycan or with addition of heparan sulfate or chondroitin sulfate A/C but did stimulate BaF/KGFR division in the presence of dermatan sulfate or highly sulfated low molecular weight fractions of dermatan. Dermatan sulfate also enabled FGF-7-dependent phosphorylation of mitogen-activated protein kinase and promoted binding of radiolabeled FGF-7 to FGFR2 IIIb. In addition, dermatan sulfate and FGF-7 stimulated growth of normal keratinocytes in culture. Thus, dermatan sulfate, the predominant glycosaminoglycan in skin, is the principle cofactor for FGF-7.  相似文献   

8.
A divalent cation-dependent association between heparin or heparan sulfate and the ectodomain of the fibroblast growth factor (FGF) receptor kinase (FGFR) restricts FGF-independent trans-phosphorylation between self-associated FGFR and determines specificity for and mediates binding of activating FGF. Here we show that only the fraction of commercial heparin or rat liver heparan sulfate which binds to immobilized antithrombin formed an FGF-binding binary complex with the ectodomain of the FGFR kinase. Conversely, only the fraction of heparin that binds to immobilized FGFR inhibited Factor Xa in the presence of antithrombin. Only the antithrombin-bound fraction of heparin competed with (3)H-heparin bound to FGFR in absence of FGF, whereas both antithrombin-bound and unretained fractions competed with radiolabeled heparin bound independently to FGF-1 and FGF-2. The antithrombin-bound fraction of heparin was required to support the heparin-dependent stimulation of DNA synthesis of endothelial cells by FGF-1. The requirement for divalent cations and the antithrombin-binding motif distinguish the role of heparan sulfate as an integral subunit of the FGFR complex from the wider range of effects of heparan sulfates and homologues on FGF signaling through FGFR-independent interactions with FGF.  相似文献   

9.
Fibroblast growth factors (FGFs) mediate a multitude of physiological and pathological processes by activating a family of tyrosine kinase receptors (FGFRs). Each FGFR binds to a unique subset of FGFs and ligand binding specificity is essential in regulating FGF activity. FGF-7 recognizes one FGFR isoform known as the FGFR2 IIIb isoform or keratinocyte growth factor receptor (KGFR), whereas FGF-2 binds well to FGFR1, FGFR2, and FGFR4 but interacts poorly with KGFR. Previously, mutations in FGF-2 identified a set of residues that are important for high affinity receptor binding, known as the primary receptor-binding site. FGF-7 contains this primary site as well as a region that restricts interaction with FGFR1. The sequences that confer on FGF-7 its specific binding to KGFR have not been identified. By utilizing domain swapping and site-directed mutagenesis we have found that the loop connecting the beta4-beta5 strands of FGF-7 contributes to high affinity receptor binding and is critical for KGFR recognition. Replacement of this loop with the homologous loop from FGF-2 dramatically reduced both the affinity of FGF-7 for KGFR and its biological potency but did not result in the ability to bind FGFR1. Point mutations in residues comprising this loop of FGF-7 reduced both binding affinity and biological potency. The reciprocal loop replacement mutant (FGF2-L4/7) retained FGF-2 like affinity for FGFR1 and for KGFR. Our results show that topologically similar regions in these two FGFs have different roles in regulating receptor binding specificity and suggest that specificity may require the concerted action of distinct regions of an FGF.  相似文献   

10.
The interference of the heparin-neutralizing plasma component S protein (vitronectin) (Mr = 78,000) with heparin-catalyzed inhibition of coagulation factor Xa by antithrombin III was investigated in plasma and in a purified system. In plasma, S protein effectively counteracted the anticoagulant activity of heparin, since factor Xa inhibition was markedly reduced in comparison to heparinized plasma deficient in S protein. Using purified components in the presence of heparin, S protein induced a concentration-dependent reduction of the inhibition rate of factor Xa by antithrombin III. This resulted in a decrease of the apparent pseudo-first order rate constant by more than 10-fold at a physiological ratio of antithrombin III to S protein. S protein not only counteracted the anticoagulant activity of commercial heparin but also of low molecular weight forms of heparin (mean Mr of 4,500). The heparin-neutralizing activity of S protein was found to be mainly expressed in the range 0.2-10 micrograms/ml of high Mr as well as low Mr heparin. S protein and high affinity heparin reacted with apparent 1:1 stoichiometry to form a complex with a dissociation constant KD = 1 X 10(-8) M as determined by a functional assay. As deduced from dot-blot analysis, direct interaction of radiolabeled heparin with S protein revealed a dissociation constant KD = 4 X 10(-8) M. Heparin binding as well as heparin neutralization by S protein increased significantly when reduced/carboxymethylated or guanidine-treated S protein was employed indicating the existence of a partly buried heparin-binding domain in native S protein. Radiolabeled heparin bound to the native protein molecule as well as to a BrCN fragment (Mr = 12,000) containing the heparin-binding domain as demonstrated by direct binding on nitrocellulose replicas of sodium dodecyl sulfate-polyacrylamide gels. Kinetic analysis revealed that the heparin neutralization activity of S protein in the inhibition of factor Xa by antithrombin III could be mimicked by a synthetic tridecapeptide from the amino-terminal portion of the heparin-binding domain. These data provide evidence that the heparin-binding domain of S protein appears to be unique in binding to heparin and thereby neutralizing its anticoagulant activity in the inhibition of coagulation factors by antithrombin III. The induction of heparin binding and neutralization may be considered a possible physiological mechanism initiated by conformational alteration of the S protein molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Models of the oligomeric FGF signaling complex, including those derived from crystal structures, vary in stoichiometry and arrangement of the three subunits comprised of heparin/heparan sulfate chains, FGFR tyrosine kinase and activating FGF. Here, using covalent affinity crosslinking of radiolabeled FGF7 to binary complexes of FGFR2IIIb and heparin, we show that two molecules of FGF7 contact each FGFR2IIIb. This supports models that propose a dimeric complex of two units with stoichiometry 1 FGF:1 FGFR in which each FGF contacts both FGFR. The bivalent FGF7 contact was dependent on the full-length amino terminus of FGF7alpha and the intracellular domain of FGFR2IIIb extending through the juxtamembrane domain and the beta1 and beta2 strands of the kinase which is required for ATP binding. We propose that the differences in crosslinking report differences in relationships among subunits in the ectodomain of the complex that are affected by the amino terminus of FGF and the FGFR intracellular domain. From this, we suggest the corollary that conformational relationships among subunits in the ectodomain are transmitted to the intracellular and ATP binding domains during activation of the complex.  相似文献   

12.
Fibroblast growth factors (FGFs) comprise a large family of multifunctional, heparin-binding polypeptides that show diverse patterns of interaction with a family of receptors (FGFR1 to -4) that are subject to alternative splicing. FGFR binding specificity is an essential mechanism in the regulation of FGF signaling and is achieved through primary sequence differences among FGFs and FGFRs and through usage of two alternative exons, IIIc and IIIb, for the second half of immunoglobulin-like domain 3 (D3) in FGFRs. While FGF4 binds and activates the IIIc splice forms of FGFR1 to -3 at comparable levels, it shows little activity towards the IIIb splice forms of FGFR1 to -3 as well as towards FGFR4. To begin to explore the structural determinants for this differential affinity, we determined the crystal structure of FGF4 at a 1.8-A resolution. FGF4 adopts a beta-trefoil fold similar to other FGFs. To identify potential receptor and heparin binding sites in FGF4, a ternary FGF4-FGFR1-heparin model was constructed by superimposing the FGF4 structure onto FGF2 in the FGF2-FGFR1-heparin structure. Mutation of several key residues in FGF4, observed to interact with FGFR1 or with heparin in the model, produced ligands with reduced receptor binding and concomitant low mitogenic potential. Based on the modeling and mutational data, we propose that FGF4, like FGF2, but unlike FGF1, engages the betaC'-betaE loop in D3 and thus can differentiate between the IIIc and IIIb splice isoforms of FGFRs for binding. Moreover, we show that FGF4 needs to interact with both the 2-O- and 6-O-sulfates in heparin to exert its optimal biological activity.  相似文献   

13.
A divalent cation-dependent association between heparin or heparan sulfate and the ectodomain of the FGF receptor kinase (FGFR) restricts FGF-independent trans-phosphorylation and supports the binding of activating FGF to self-associated FGFR. Here we show that in contrast to heparin, cellular heparan sulfate forms a binary complex with FGFR that discriminates between FGF-1 and FGF-2. FGFR type 4 (FGFR4) in liver parenchymal cells binds only FGF-1, whereas FGFR1 binds FGF-1 and FGF-2 equally. Cell-free complexes of heparin and recombinant FGFR4 bound FGF-1 and FGF-2 equally. However, in contrast to FGFR1, when recombinant FGFR4 was expressed back in epithelial cells by transfection, it failed to bind FGF-2 unless heparan sulfate was depressed by chlorate or heparinase treatment. Isolated heparan sulfate proteoglycan (HSPG) from liver cells in cell-free complexes with FGFR4 restored the specificity for FGF-1 and supported the binding of both FGF-1 and FGF-2 when complexed with FGFR1. In contrast, FGF-2 bound equally well to complexes of both FGFR1 and FGFR4 formed with endothelial cell-derived HSPG, but the endothelial HSPG was deficient for the binding of FGF-1 to both FGFR complexes. These data suggest that a heparan sulfate subunit is a cell type- and FGFR-specific determinant of the selectivity of the FGFR signaling complex for FGF. In a physiological context, the heparan sulfate subunit may limit the redundancy among the current 18 FGF polypeptides for the 4 known FGFR.  相似文献   

14.
Among the members of the fibroblast growth factor receptor family the FGFR4 has demonstrated strong dependence on heparin-like material for its activation by fibroblast growth factors. We have produced and characterized a recombinant human FGFR4 extracellular domain (FGFR4ed), in order to study its biochemical properties in isolated conditions. The FGFR4ed was expressed in an insect cell system and purified from the culture medium by Ni(2+)-affinity and gel filtration chromatography. Pure FGFR4ed was tested for FGF- and heparin-binding by covalent crosslinking experiments and by biosensor analysis. In solution, FGFR4ed formed complexes with acidic FGF (FGF-1) and basic FGF (FGF-2), both in the presence and absence of heparin. Immobilized FGFR4 also bound FGF-8 besides FGF-1 and FGF-2. Furthermore, heparin alone induced receptor oligomerization on the surface of the receptor coupled chip. Thus, the recombinant FGFR4ed revealed properties described for the cellular form of this receptor and can be used for interaction studies.  相似文献   

15.
Heparin and heparan sulfate proteoglycans (HSPG) bind many soluble growth factors and this binding is now recognized as an important mechanism for modulation of cell activity. Fibroblast growth factor-2 (FGF-2) is one of the best characterized of the heparin-binding growth factors and it has been shown experimentally that heparin regulation of FGF-2 activity is dependent on the level of cell HSPG and the concentration of heparin. In this paper, we explore, using mathematical modeling, proposed mechanisms for heparin regulation and determine how they impact FGF receptor binding. We demonstrate that the experimentally observed receptor binding phenomena can be reproduced if cells (1) express heparin-binding cell surface molecules and if either (2) these heparin binding sites are FGFR and bind heparin and FGF-2-heparin complexes or (3) are surface molecules able to bind FGF-2 and couple with FGF-2 receptors to form high-affinity FGF-2-bound surface complexes. The ability of heparin to directly interact with the FGFR and bind FGF-2 in the absence of this coupling function was not sufficient to explain heparin activity. These findings have implications with regard to regulation of heparin-binding growth factors and could help guide the development of highly specific growth regulatory molecules through specific regulation by heparin and HSPG.  相似文献   

16.
The keratinocyte growth factor (KGF or FGF-7) is unique among its family members both in its target cell specificity and its inhibition by the addition of heparin and the native heparan-sulfate proteoglycan (HSPG), glypican-1 in cells expressing endogenous HSPGs. FGF-1, which binds the FGF-7 receptor with a similar affinity as FGF-7, is stimulated by both molecules. In the present study, we investigated the modulation of FGF-7 activities by heparin and glypican-1 in HS-free background utilizing either HS-deficient cells expressing the FGF-7 receptor (designated BaF/KGFR cells) or soluble extracellular domain of the receptor. At physiological concentrations of FGF-7, heparin was required for high affinity receptor binding and for signaling in BaF/KGFR cells. In contrast, binding of FGF-7 to the soluble form of the receptor did not require heparin. However, high concentrations of heparin inhibited the binding of FGF-7 to both the cell surface and the soluble receptor, similar to the reported effect of heparin in cells expressing endogenous HSPGs. The difference in heparin dependence for high affinity interaction between the cell surface and soluble receptor may be due to other molecule(s) present on cell surfaces. Glypican-1 differed from heparin in that it stimulated FGF-1 but not FGF-7 activities in BaF/KGFR cells. Glypican-1 abrogated the stimulatory effect of heparin, and heparin reversed the inhibitory effect of glypican-1, indicating that this HSPG inhibits FGF-7 activities by acting, most likely, as a competitive inhibitor of stimulatory HSPG species for FGF-7. The regulatory effect of glypican-1 is mediated at the level of interaction with the growth factor as glypican-1 did not bind the KGFR. The effect of heparin and glypican-1 on FGF-1 and FGF-7 oligomerization was studied employing high and physiological concentrations of growth factors. We did not find a correlation between the effects of these glycosaminoglycans on FGFs biological activity and oligomerization. Altogether, our findings argue against the heparin-linked dimer presentation model as key in FGFR activation, and support the notion that HSPGs primarily affect high affinity interaction of FGFs with their receptors.  相似文献   

17.
Variations in sulfation of heparan sulfate (HS) affect interaction with FGF, FGFR, and FGF-HS-FGFR signaling complexes. Whether structurally distinct HS motifs are at play is unclear. Here we used stabilized recombinant FGF7 as a bioaffinity matrix to purify size-defined heparin oligosaccharides. We show that only 0.2%-4% of 6 to 14 unit oligosaccharides, respectively, have high affinity for FGF7 based on resistance to salt above 0.6M NaCl. The high affinity fractions exhibit highest specific activity for interaction with FGFR2IIIb and formation of complexes of FGF7-HS-FGFR2IIIb. The majority fractions with moderate (0.30-0.6M NaCl), low (0.14-0.30M NaCl) or no affinity at 0.14M NaCl for FGF7 supported no complex formation. The high affinity octasaccharide mixture exhibited predominantly 7- and 8-sulfated components (7,8-S-OctaF7) and formed FGF7-HS-FGFR2IIIb complexes with highest specific activity. Deduced disaccharide analysis indicated that 7,8-S-OctaF7 comprised of DeltaHexA2SGlcN6S in a 2:1 ratio to a trisulfated and a variable unsulfated or monosulfated disaccharide. The inactive octasaccharides with moderate affinity for FGF7 were much more heterogenous and highly sulfated with major components containing 11 or 12 sulfates comprised of predominantly trisulfated disaccharides. This suggests that a rare undersulfated motif in which sulfate groups are specifically distributed has highest affinity for FGF7. The same motif also exhibits structural requirements for high affinity binding to dimers of FGFR2IIIb prior to binding FGF7 to form FGF7-HS-FGFR2IIIb complexes. In contrast, the majority of more highly sulfated HS motifs likely play FGFR-independent roles in stability and control of access of FGF7 to FGFR2IIIb in the tissue matrix.  相似文献   

18.
Fibroblast growth factors (FGFs) transmit their signals through four transmembrane receptors that are designated FGFR1-4. Alternative splicing in the extracellular region of FGFR1-3 generates receptor variants with different ligand binding affinities. Thus two types of transmembrane receptors (IIIb and IIIc isoforms) have been identified for FGFR2 and FGFR3, and the existence of analogous variants has been postulated for FGFR1 based on its genomic structure. However, only a single full-length transmembrane FGFR1 variant (FGFR1-IIIc) has been identified so far. Here we describe the cloning of a full-length cDNA encoding FGFR1-IIIb from a mouse skin wound cDNA library. This receptor isoform was expressed at the highest levels in a subset of sebaceous glands of the skin and in neurons of the hippocampus and the cerebellum. FGFR1-IIIb was expressed in L6 rat skeletal muscle myoblasts and used in cross-linking and receptor binding studies. FGF-1 was found to bind the receptor with high affinity, whereas FGF-2, -10, and -7 bound with significantly lower affinities. Despite their apparently similar but low affinities, FGF-10 but not FGF-7 induced the activation of p44/42 mitogen-activated protein kinase in FGFR1-IIIb-expressing L6 myoblasts and stimulated mitogenesis in these cells, demonstrating that this new receptor variant is a functional transmembrane receptor for FGF-10.  相似文献   

19.
FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4.   总被引:14,自引:0,他引:14  
We have identified a novel fibroblast growth factor, FGF-19, the most distant member of the FGF family described to date. FGF-19 is a high affinity, heparin dependent ligand for FGFR4 and is the first member of the FGF family to show exclusive binding to FGFR4. Human FGF-19 maps to chromosome 11 q13.1, a region associated with an osteoporosis-pseudoglioma syndrome of skeletal and retinal defects. FGF-19 message is expressed in several tissues including fetal cartilage, skin, and retina, as well as adult gall bladder and is overexpressed in a colon adenocarcinoma cell line.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号