首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of DNA polymerase alpha by aphidicolin derivatives.   总被引:3,自引:3,他引:0       下载免费PDF全文
L Arabshahi  N Brown  N Khan    G Wright 《Nucleic acids research》1988,16(11):5107-5113
17-Acetylaphidicolin was 10-fold weaker and two derivatives lacking hydroxyl groups at the 16 and 17 positions were 100-fold weaker than aphidicolin as inhibitors of DNA polymerase alpha from HeLa and Chinese hamster ovary cells. 17,18-Diacetyl, 3,17,18-triacetyl and 3-epi derivatives of aphidicolin were inactive. Active compounds were, like aphidicolin, competitive with dCTP and did not inhibit aphidicolin-resistant DNA polymerases.  相似文献   

2.
Mechanism of DNA polymerase alpha inhibition by aphidicolin   总被引:9,自引:0,他引:9  
R Sheaff  D Ilsley  R Kuchta 《Biochemistry》1991,30(35):8590-8597
Synthetic oligonucleotides of defined sequence were used to examine the mechanism of calf thymus DNA polymerase alpha inhibition by aphidicolin. Aphidicolin competes with each of the four dNTPs for binding to a pol alpha-DNA binary complex and thus should not be viewed as a dCTP analogue. Kinetic evidence shows that inhibition proceeds through the formation of a pol alpha.DNA.aphidicolin ternary complex, while DNase I protection experiments provide direct physical evidence. When deoxyguanosine is the next base to be replicated, Ki = 0.2 microM. In contrast, the Ki is 10-fold higher when the other dNMPs are at this position. Formation of a pol alpha.DNA.aphidicolin ternary complex did not inhibit the primase activity of the pol alpha.primase complex. Neither the rate of primer synthesis nor the size distribution of primers 2-10 nucleotides long was changed. Elongation of the primase-synthesized primers by pol alpha was inhibited both by ternary complex formation using exogenously added DNA and by aphidicolin alone.  相似文献   

3.
Aphidicolin and 17 derivatives that have been structurally modified in the A- and D-rings were assessed for their ability to inhibit DNA polymerase alpha. No derivative surpassed the activity of aphidicolin; derivatives with structural alterations in the A-ring exhibited significantly greater loss of activity relative to derivatives with structural alterations in the D-ring. The conclusions of these studies indicate a critical role for the C-18 function in the interaction of aphidicolin with polymerase alpha. Molecular modelling studies could not identify structural features of the aphidicolin-dCTP "overlap" that is unique to dCTP, relative to the remaining dNTPs, and that is consistent with the extant structure-activity data.  相似文献   

4.
Both the inhibitory effect of aphidicolin on the replicative alpha-polymerase and the reversibility of its action in vivo (Pedrali-Noy & Spadari, 1979, Biochem. Biophys. Res. Commun. 88, 1194-2002) allow the synchronization of cells in culture. Aphidicolin prevents G1 cells from entering the DNA synthetic period, blocks cells in "S" phase, allows G2, M and G1 cells to continue the cell cycle and to accumulate at the G1/S border. Aphidicolin is a more useful reagent than hydroxyurea and thymidine because it does not affect cell viability or "S" phase duration and does not interfere with the synthesis of dNTPs or DNA polymerases. In fact cells exposed to the drug continue to synthesize all three DNA polymerases alpha, beta and gamma as well as all dNTPs which, when the block is removed, are present at levels optimal for DNA initiation and replication. The technique is simple and can be applied to cells growing in suspension or monolayers and allows one to harvest large quantities of synchronized cells.  相似文献   

5.
Isolated HeLa cell nuclei were treated with NaCl at various concentrations and inhibition by aphidicolin of DNA synthesis in the treated nuclei was studied. The inhibition was either noncompetitive or of the mixed type with respect to each dNTP when the nuclei were treated with NaCl at concentrations lower than 0.08 M. However, aphidicolin was a competitive inhibitor with respect to dCTP and a non-competitive or mixed type inhibitor with respect to the other 3 dNTPs when they were treated with NaCl at concentrations higher than 0.1 M. These results suggest the presence of nuclear factor(s) responsible for the changes in the inhibitory mode of aphidicolin on endogenous nuclear DNA synthesis.  相似文献   

6.
7.
Betalactam antibiotics (BLA) are the most widely used antibacterial drugs in practical medicine. Recent experiments suggested that BLA, especially after "aging" in aqueous solutions, have an inhibitory effect on the growth of a variety of cultured human cells by interfering with DNA synthesis (Neftel et al. Cell Biol. Toxicol. 2, 513-521, 1986). Our initial observation that the replicative DNA polymerase alpha might be the target of the action of betalactam compounds (Hübscher et al. Cell Biol Toxicol. 2, 541-548, 1986) is now substantiated due to the following experimental data: (i) extractable DNA polymerase alpha is greatly reduced in cells that had been treated with BLA; (ii) the relative cellular distribution of thymidine and of its phosphorylated derivatives is not affected by BLA; (iii) BLA inhibit crude and highly purified mammalian DNA polymerase alpha; (iv) the inhibitory effect appears to be of the mixed type with a slight deviation from purely non-competitive behaviour towards the four deoxyribonucleoside triphosphates and; (v) the inhibition is evident in aphidicolin sensitive DNA polymerases from mammalian tissues and in DNA polymerases from DNA viruses such as Herpes simplex and Vaccinia. In sum, the results suggest that one of the most commonly used class of drugs has a target within eukaryotic cells being most likely the replicative DNA polymerase alpha.  相似文献   

8.
The kinetics of the inhibition of DNA polymerases-alpha and -beta from sea urchin embryos by pyridoxal 5-phosphate were studied. The inhibition of DNA polymerase-alpha activity by pyridoxal 5-phosphate was competitive with activated DNA but noncompetitive with each deoxynucleoside triphosphate. With poly(dC)-oligo(dG)12-18 as a template-primer, however, the inhibition of DNA polymerase-alpha was competitive with dGTP but noncompetitive with the template-primer. These results suggest that DNA polymerase-alpha interacts with activated DNA and poly(dC)-oligo(dG)12-18 in different ways. The inhibition of DNA polymerase-beta by pyridoxal 5-phosphate was competitive with deoxynucleoside triphosphate using activated DNA as a template-primer and noncompetitive with activated DNA. Using poly(rA)-oligo(dT)12-18 as a template-primer, DNA polymerase-beta activity yielded sigmoid curves against both dTTP and the template-primer concentrations and was inhibited by pyridoxal 5-phosphate noncompetitively with respect to both dTTP and the template-primer. These results indicate that the inhibitory mode of DNA polymerase-alpha by pyridoxal 5-phosphate is different from that of DNA polymerase-beta.  相似文献   

9.
10.
On activated DNA aphidicolin competitively inhibits the incorporation of dCMP by both calf thymus DNA polymerase alpha A2 and C enzymes and inhibits the incorporation of the other three deoxynucleoside monophosphates apparently non-competitively. However, aphidicolin does not inhibit the incorporation of dAMP into poly(dT) . oligo(A)10 nor does it inhibit the incorporation of dGMP into poly(dC) . oligo(dG)10, but, it does competitively inhibit the incorporation of dTMP into poly(dA) . oligo(dT)10.  相似文献   

11.
A new lanostane-type triterpene acid, (20xi)-3-oxolanosta-7,9(11),24-trien-21-oic acid (1; dehydrotrametenonic acid), along with a known triterpene acid, dehydroeburiconic acid (2), were isolated from the epidermis of the sclerotia of Poria cocos. The structure of 1 was analyzed on the basis of spectroscopic methods. Compounds 1 and 2 inhibited calf DNA polymerase alpha and rat DNA polymerase beta, with the 50% inhibition values of 45.5 microM (1) and 40.8 microM (2), and 86.5 microM (1) and 30.0 microM (2), respectively.  相似文献   

12.
We have previously reported that sulfoquinovosylmonoacylglycerol (SQMG) is a potent inhibitor of mammalian DNA polymerases. DNA polymerase beta (pol beta) is one of the most important enzymes protecting the cell against DNA damage by base excision repair. In this study, we characterized the inhibitory action of SQMG against rat pol beta. SQMG competed with both the substrate and the template-primer for binding to pol beta. A gel mobility shift assay and a polymerase activity assay showed that SQMG competed with DNA for a binding site on the N-terminal 8-kDa domain of pol beta, subsequently inhibiting its catalytic activity. Fragments of SQMG such as sulfoquinovosylglycerol (SQG) and fatty acid (myristoleic acid, MA) weakly inhibited pol beta activity and the inhibitory effect of a mixture of SQG and MA was stronger than that of SQG or MA. To characterize this inhibition more precisely, we attempted to identify the interaction interface between SQMG and the 8-kDa domain by NMR chemical shift mapping. Firstly, we determined the binding site on a fragment of SQMG, the SQG moiety. We observed chemical shift changes primarily at two sites, the residues comprising the C-terminus of helix-1 and the N-terminus of helix-2, and residues in helix-4. Finally, based on our present results and our previously reported study of the interaction interface of fatty acids, we constructed two three-dimensional models of a complex between the 8-kDa domain and SQMG and evaluated them by the mutational analysis. The models show a SQMG interaction interface that is consistent with the data.  相似文献   

13.
The evolutionary conservation of DNA polymerase alpha.   总被引:7,自引:3,他引:4       下载免费PDF全文
M A Miller  D Korn    T S Wang 《Nucleic acids research》1988,16(16):7961-7973
The evolutionary conservation of DNA polymerase alpha was assessed by immunological and molecular genetic approaches. Four anti-human KB cell DNA polymerase alpha monoclonal antibodies were tested for their ability to recognize a phylogenetically broad array of eukaryotic DNA polymerases. While the single non-neutralizing antibody used in this study recognizes higher mammalian (human, simian, canine, and bovine) polymerases only, three neutralizing antibodies exhibit greater, but variable, extents of cross-reactivity among vertebrate species. The most highly cross-reactive antibody recognizes a unique epitope on a 165-180 kDa catalytic polypeptide in cell lysates from several eukaryotic sources, as distant from man as the amphibians. Genomic Southern hybridization studies with the cDNA of the human DNA polymerase alpha catalytic polypeptide identify the existence of many consensus DNA sequences within the DNA polymerase genes of vertebrate, invertebrate, plant and unicellular organisms. These findings illustrate the differential evolutionary conservation of four unique epitopes on DNA polymerase alpha among vertebrates and the conservation of specific genetic sequences, presumably reflective of critical functional domains, in the DNA polymerase genes from a broad diversity of living forms.  相似文献   

14.
The mode of action of aphidicolin on DNA synthesis catalysed by the DNA polymerase of Methanococcus vannielii is competitive for dCTP, noncompetitive for dATP, dGTP and dTTP and uncompetitive for activated DNA. The kinetic data are accounted for by a mechanism in which dCTP and aphidicolin compete for the dCTP-specific binding site on the DNA polymerase. The dissociation constant for the aphidicolin--DNA-polymerase complex is 0.04-0.07 microM. Similar modes of inhibition of DNA synthesis exist for DNA polymerase alpha of higher eucaryotes but not for eubacteria or viruses and suggests a close functional relationship between the DNA polymerase of eucaryotes and of the archaebacterium M. vannielii.  相似文献   

15.
16.
Sulfoquinovosyldiacylglycerols (SQDGs) and sulfoquinovosylmonoacylglycerols (SQMGs), bearing diverse fatty acids, were synthesized from D-glucose, and were examined for enzymatic inhibitions of DNA polymerase alpha and beta. These results indicated that the carbon numbers of the fatty acids were highly related to the activities, at least in vitro, of eukaryotic DNA polymerase inhibition.  相似文献   

17.
The effect of aphidicolin on adenovirus DNA synthesis.   总被引:23,自引:9,他引:23       下载免费PDF全文
Aphidicolin inhibits adenovirus DNA replication in HeLa cells and in a cell-free, infected, nuclear extract in which viral DNA is elongated. The compound inhibits alpha DNA polymerase, extensively purified from HeLa cells, but has little or no effect on the beta or gamma DNA polymerases similarly purified. Aphidicolin does not affect thymidine uptake by cells nor does synthesis as it also inhibits DNA replication in uninfected cells. The inhibition by aphidicolin is reversible if the drug is removed within 18 hrs after addition to HeLa or Chinese Hamster Ovary cells but the cells are irreversibly affected if the drug remains for 48 hours.  相似文献   

18.
19.
DNA polymerase alpha   总被引:16,自引:0,他引:16  
  相似文献   

20.
Our earlier studies have shown that gossypol is a specific inhibitor of DNA synthesis in cultured cells at low doses. In an attempt to determine the mechanism for the inhibition of DNA synthesis by gossypol we observed that gossypol does not interact with DNA per se but may affect some of the enzymes involved in DNA replication. These studies indicated that gossypol inhibits both in vivo and in vitro the activity of DNA polymerase alpha (EC 2.7.7.7), a major enzyme involved in DNA replication, in a time- and dose-dependent manner. Kinetic analysis revealed that gossypol acts as a noncompetitive inhibitor of DNA polymerase alpha with respect to all four deoxynucleotide triphosphates and to the activated DNA template. Inhibition of DNA polymerase alpha does not appear to be due to either metal chelation or reduction of sulfhydryl groups on the enzyme. Gossypol also inhibited HeLa DNA polymerase beta in a dose-dependent manner, but had no effect on DNA polymerase gamma. These results suggest that inhibition of DNA polymerase alpha may account in part for the inhibition of DNA synthesis and the S-phase block caused by gossypol. The data also raise the possibility that gossypol may interfere with DNA repair processes as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号