首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the nature of sporogenesis in some aerobic bacteria   总被引:30,自引:0,他引:30  
Washed vegetative cells of various species of aerobic spore-forming bacteria sporulate abundantly when shaken in distilled water in air. The spores thus formed possess the same heat resistance as spores formed in a complete growth medium. Various factors influencing sporogenesis in water are described. Glucose in low concentration completely suppresses sporogenesis under these conditions and the suppression is relieved by the presence of ammonia as an exogenous source of nitrogen. Various amino acid and purine antimetabolite analogues inhibit sporogenesis and their inhibitory effects are completely reversed by much smaller amounts of the corresponding metabolites. Sporogenesis is thus regarded as a de novo synthesis of spore proteins from preexisting endogenous (enzyme) proteins. Cells low in protein fail to sporulate and the capacity of the cell to adaptively attack maltose and trehalose is strongly interfered with after the cell is irreversibly committed to sporulation, but not before that. Evidence is advanced supporting the hypothesis that sporogenesis is an endogenous process which commences when the supply of exogenous energy and carbon is depleted. It utilizes low molecular weight nitrogenous substances liberated by the degradation of preexisting enzyme proteins of the vegetative cell. Sporogenesis and adaptive enzyme formation are regarded as competitive synthetic processes, both utilizing endogenous enzyme proteins. The events of sporogenesis suggest that this process may be an adaptive protein synthesis, analogous to adaptive enzyme synthesis.  相似文献   

2.
The source of energy for enzymatic adaptation has been investigated. Aerobically, it is found that the endogenous carbohydrate reserves may be used as such a source. In cells depleted of their reserves, the adaptive substrate itself can be oxidized even while it cannot be fermented, and so can serve as a source of energy for the adaptation to a fermentative mode of utilization. Anaerobically, adaptation may occur at the expense of stored energy-rich compounds, while the reserves and the adaptive substrate are now useless as fuel. Such compounds appear to be more plentiful in young than in old cells. The addition of any fermentable substrate, such as glucose, leads to rapid anaerobic adaptation. Experiments in which maltose-adapted cells are adapted anaerobically to galactose with the aid of a little added maltose, and conversely, show that fermentability is the criterion of usefulness for an exogenous substrate in aiding the adaptive process. None of the endogenous and exogenous energy sources which have been investigated will facilitate adaptation unless the adaptive substrate is present while they are being consumed. The significance of these findings and the adequacy of "activation" hypotheses to explain enzymatic adaptation has been discussed.  相似文献   

3.
The aim of this work is to study the partitioning of alpha-amylase from Aspergillus oryzae in polyethylene glycol-potassium phosphate systems formed by polymers of different molecular masses with different total concentrations, several NaCl concentrations and different volume ratio between the phases and at different temperatures. The enzyme was partitioned towards the top phase in the 2000-molecular-mass polyethylene glycol systems and towards the bottom phase in the other systems analyzed with higher molecular mass. The protein-medium interaction parameter (A) was determined; it increased in the same way as PEG molecular mass. The enthalpic and entropic changes found, in general, were negative and were shown to be associated by an entropic-enthalpic compensation effect suggesting that the ordered water structure in the chain of polyetyleneglycol plays a role in protein partition. The recovery in each of the phases was calculated in order to choose the best systems to be applied to enzyme isolation either from a polymer-rich or a polymer-poor phase.Enzymatic activity, circular dichroism and fluorescence were studied for the protein alone and in the presence of the different phases of the aqueous two-phase systems (ATPSs) in order to understand how they affect the enzymatic structure and the role of the protein-polymer interaction in the partitioning process. Secondary structure is not affected, in general, by the presence of the phases that do affect the enzymatic activity; therefore, there should be a change in the tertiary structure in the enzyme active site. These changes are more important for PEG 8000 than for PEG 2000 systems according to the results of the quenching of the intrinsic fluorescence. In a bio-separation process, the A. oryzae alpha-amylase could be isolated with ATPSs PEG 2000/Pi or PEG 8000/Pi with a high recovery, in the top or bottom phases, respectively.  相似文献   

4.
In order to investigate the mechanism of the different stimulatory effects of the biosurfactant rhamnolipid and the chemical surfactant Tween 80 on enzymatic hydrolysis of lignocellulose, the interaction between surfactants and enzymes was analyzed by the fluorescence probe method using pyrene as probe. Based on the evolution law of pyrene fluorescence spectroscopy in the “surfactants-enzymes” systems, the interaction relationship between surfactants and enzymes was analyzed and discussed in this paper. The results show that enzyme molecules bind with rhamnolipid molecules, participate in the formation of rhamnolipid micelles, and increase the inner hydrophobic polarity of micelles, but do not change the properties of rhamnolipid micelles above the CMC (Critical Micelle Concentration). Nevertheless, for Tween 80, enzyme molecules also participate in the forming of micelles, however, they exhibit a stronger interaction with enzymes above the CMC. Both rhamnolipid and Tween 80 bind more strongly with xylanase than cellulase. Considering also previous experimental results, it can be concluded that the interaction between surfactants and enzymes improve enzyme stability and activity, and, therefore, the efficiency of enzymatic hydrolysis of lignocellulose is enhanced. The findings further provide theoretical knowledge about the mechanism of the stimulative effects of surfactants on enzymatic hydrolysis of lignocellulose.  相似文献   

5.
A novel approach has been elaborated to identify the mechanism of intermediate transfer in interacting enzyme systems. The aldolase/glycerol-3-phosphate-dehydrogenase enzyme system was investigated since complex formation between these two enzymes had been demonstrated. The kinetics of dihydroxyacetone phosphate conversion catalyzed by the dehydrogenase in the absence and presence of aldolase was analyzed. It was found that the second-order rate constant (kcat/Km) of the enzymatic reaction decreases due to the formation of a heterologous complex. The decrease could be attributed to an increase of the Km value since kcat did not change in the presence of aldolase. In contrast, an apparent increase in the second-order rate constant of dihydroxyacetone phosphate conversion by the dehydrogenase was observed if the triose phosphate was produced by aldolase from fructose 1,6-bisphosphate (consecutive reaction). Moreover, no effect of dihydroxyacetone phosphate on the dissociation constant of the heterologous enzyme complex could be detected by physico-chemical methods. The results suggest that the endogenous dihydroxyacetone phosphate produced by aldolase complexed with dehydrogenase is more accessible for the dehydrogenase than the exogenous one, the binding of which is impeded due to steric hindrance by bound aldolase.  相似文献   

6.
Depending on conditions of aeration maltose and glucose were found to exhibit different effects on the inducible synthesis of β-galactosidase in aerobically grown cells ofEscherichia coli starving for an exogenous source of nitrogen; both saccharides repressed the synthesis of the enzyme under aerobic conditions, while the above-mentioned saccharides were essential for the enzyme synthesis under anaerobic conditions. The presence of maltose in the medium resulted in the repression of the enzyme synthesis in anaerobically grown cells starving for an exogenous nitrogen source under anaerobic conditions. The synthesis of β-galactosidase-specific messenger RNA was completely blocked and the synthesis of the enzyme proper considerably inhibited in aerobically grown cells incubated anaerobically in a medium without nitrogen and carbon sources.  相似文献   

7.
Hexadecylphosphocholine (HePC) is known as antitumor agent but the mechanism has not yet been understood. In rat liver mitochondria its effect on phospholipid transformation has been studied by quantitative HPTLC and phosphorus determination. From the results it can be concluded that HePC influences the activities of phospholipase A2, phospholipase C, phospholipase D, and lysophospholipase A. The phospholipid transformation as well as the influence of HePC are affected by exogenous calcium ions. In the presence of calcium HePC has been found to inhibit enzyme activities, whereas in the absence of exogenous calcium ions enzymatic phospholipid transformations are activated or inhibited depending on HePC concentrations.  相似文献   

8.
Escherichia coli B synthesized beta-galactosidase and an enzyme system for D-xylose when exposed to lactose and xylose respectively in nitrogen-free media. The amount of beta-galactosidase formed in the absence of external nitrogen depended upon the nature of the medium in which the cells had originally been grown. Half as much of this enzyme was synthesized without exogenous nitrogen by cells taken from a nitrogen-rich medium as was formed by cells under favorable conditions with an external supply of nitrogen. Escherichia coli B contained a pool of nitrogen compounds soluble in 80 per cent ethanol and made up of several ninhydrin-positive components. One of these was identified chromatographically as glycine using an authentic radioactive sample. Another substance behaved like serine on the chromatograms. The internal pool of amino acids and peptides was large enough to account for the beta-galactosidase synthesized by cells exposed to lactose in a medium free of nitrogen. Some degree of interaction of the syntheses of the beta-galactosidase and xylose enzyme systems was observed in nitrogen-free media. This interaction produced a greater effect on the formation of beta-galactosidase and was attributed to a limiting factor(s) in the internal nitrogenous pool or to a limiting intermediate in enzyme synthesis.  相似文献   

9.
One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme–water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems.  相似文献   

10.
The manganese peroxidase (MnP), from the lignin-degrading fungus Phanerochaete chrysosporium, an H2O2-dependent heme enzyme, oxidizes a variety of organic compounds but only in the presence of Mn(II). The homogeneous enzyme rapidly oxidizes Mn(II) to Mn(III) with a pH optimum of 5.0; the latter was detected by the characteristic spectrum of its lactate complex. In the presence of H2O2 the enzyme oxidizes Mn(II) significantly faster than it oxidizes all other substrates. Addition of 1 M equivalent of H2O2 to the native enzyme in 20 mM Na-succinate, pH 4.5, yields MnP compound II, characterized by a Soret maximum at 416 nm. Subsequent addition of 1 M equivalent of Mn(II) to the compound II form of the enzyme results in its rapid reduction to the native Fe3+ species. Mn(III)-lactate oxidizes all of the compounds which are oxidized by the enzymatic system. The relative rates of oxidation of various substrates by the enzymatic and chemical systems are similar. In addition, when separated from the polymeric dye Poly B by a semipermeable membrane, the enzyme in the presence of Mn(II)-lactate and H2O2 oxidizes the substrate. All of these results indicate that the enzyme oxidizes Mn(II) to Mn(III) and that the Mn(III) complexed to lactate or other alpha-hydroxy acids acts as an obligatory oxidation intermediate in the oxidation of various dyes and lignin model compounds. In the absence of exogenous H2O2, the Mn-peroxidase oxidized NADH to NAD+, generating H2O2 in the process. The H2O2 generated by the oxidation of NADH could be utilized by the enzyme to oxidize a variety of other substrates.  相似文献   

11.
Enzymatic catalysis in microemulsions: enzyme reuse and product recovery   总被引:1,自引:0,他引:1  
A technique for enzyme reuse and product recovery from enzymatic catalysis in microemulsions is demonstrated. The enzymatic reaction is performed in a homogeneous isotropic microemulsion; AOT (sodium bis-(2-ethyl- hexyl)sulfosuccinate)/isooctane/buffer or C(12)E(5)(penta ethylene glycol dodecyl ether)/heptane/buffer. By small temperature changes the systems are shifted to two phase regions, where an oil-rich phase, containing the product, coexists with a water-rich phase containing surfactant and enzyme. The oil-rich phase may be replaced by an oil solution containing new substrate. Thus, the reaction may be continued and the enzyme reused. This procedure was repeated nine times in the present study. Data on phase behavior in presence and in absence of protein, partitioning of the components and a radioactive-labelled protein between the phases, and the repeated use of horse liver alcohol dehydrogenase (HLADH) in the microemulsions are presented.  相似文献   

12.
L K Hesterberg  J C Lee 《Biochemistry》1980,19(10):2030-2039
The enzymatic active form of rabbit muscle phosphofructokinase (PFK) was observed directly by using the method of reacting or active enzyme centrifugation (AEC). These studies were performed in two assay systems: a coupled enzyme and a pH-dependent dye-linked system in glycylglycine buffer at pH 8.55 and 23 +/- 1 degree C. The sedimenting band of PFK was stabilized by three solvent systems: 50% (v/v) D2O, 10% (w/v) sucrose, and 4% (v/v) or 10% (v/v) glycerol. The active PFK species sediments as a single component with a sedimentation coefficient of 12.4 +/- 0.5 S, after correcting for protein--solvent interactions. Although PFK may undergo association--dissociation, there is no observable change in the value of s20,w over a 57-fold range of protein concentration. Throughout this range only a single active species of PFK was observed, and within an experimental uncertainty of +/- 10%, the enzymatic activity observed in the sedimentation studies accounts for the total enzymatic activity observed in the steady-state kinetics. Partially purified PFK was subjected to AEC analysis. Results reveal the presence of again a single active form sedimenting at the same rate as the purified enzyme. Results from sedimentation velocity studies indicate that the stabilizing solvents employed in AEC enhance the self-association of PFK. However, such an enhancement alone cannot account for the observation of a single active species with a sedimentation coefficient of 12.4 S. The interactions between solvent additives and PFK were studied by density measurements and by the application of multicomponent theory. Results from such a preferential solvent interaction study indicate that PFK is preferentially hydrated in the presence of sucrose or glycerol. The enhancement of PFK self-association is most likely due to a nonspecific solvent--protein interaction.  相似文献   

13.
S-Adenosylmethionine synthetase from Escherichia coli is shown to require 2 divalent metal ions/enzyme subunit for maximal enzymatic activity. In the absence of substrate, the tetrameric enzyme binds 1 Mn(II) ion/subunit, whereas in the presence of a nucleotide substrate, adenylylimidodiphosphate, or the product pyrophosphate, there are two Mn(II)-binding sites/subunit. Electron paramagnetic resonance spectra of Mn(II) bound to the enzyme reveal a spin exchange interaction between 2 Mn(II) ions in complexes of enzyme and Mn(II) which also contain adenosylmethionine, K+, and either pyrophosphate or imidotriphosphate. Since a spin exchange interaction requires orbital overlap between the 2 ions, the metal ions must be bound close to one another, and they may share a common ligand.  相似文献   

14.
The feautres of kinetic behavior of dissociating enzyme systems for which the rate of equilibrium between the oligomeric forms is slow in comparison with the rate of the enzymatic process are discussed. It is shown that in slowly dissociating enzyme system of the type Np in equilibrium P (P is the enzyme oligomer, and p is the subunit: N greater than or equal to2) in which P and p forms differ by the character of allosteric interaction between the active and allosteric sites the plots of the initial reaction rate (v) versus substrate (S) or effector (F) concentration may be a very complicated shape. In similar systems the v versus [S]0 plots may have intermediate plateau, maximum and minimum simultaneously, sigmoidality followed by intermediate plateau and so on, and the v versus [F]0 plots may have intermediate plateau.  相似文献   

15.
Chromatography of maize kernel extracts on DEAE-cellulose resolves two fractions of starch synthase activity, one of which (starch synthase 1) is capable of synthesizing α-glucan in the absence of exogenous primer and the presence of 0.5 m citrate (J. L. Ozbun, J. S. Hawker, and J. Preiss, Plant Physiol. (1971) 48, 765–769). This starch synthase has been purified 200-fold from developing kernels of normal maize, and shown to have no detectable activities of branching enzyme, amylase, pullulanase, phosphorylase, and D enzyme. The preparation, however, was not electrophoretically homogeneous. This preparation had a Km value of 0.033 mm for ADPglucose in the presence of 0.5 m citrate. The reaction in the presence of citrate was stimulated 10-fold by the addition of excess purified branching enzyme. This stimulation is higher than those reported previously (C. D. Boyer and J. Preiss, Plant Physiol. (1979) 64, 1039–1042) but is consistent with the predicted effects of removal of amylase activity. The effects of salts other than citrate on activity in the absence of exogenous primer were small, but the stimulation could be restored by the addition of excess purified branching enzyme. Citrate increased the affinity of the enzyme for the endogenous primer present to such a level that no effect of exogenous primer on reaction rate could be observed in the presence of 0.5 m citrate. Analysis of the glucan/iodine complex and the enzymatic breakdown products patterns from the products of the starch synthase reaction indicates a high degree of linearity. The results obtained are discussed in relation to the biosynthesis of starch in vivo.  相似文献   

16.
Significant amounts of cell wall degrading (CWD) enzymes are required to degrade lignocellulosic biomass into its component sugars. One strategy for reducing exogenous enzyme production requirements is to produce the CWD enzymes in planta. For this work, various CWD enzymes were expressed in maize (Zea mays). Following growth and dry down of the plants, harvested maize stover was tested to determine the impact of the expressed enzymes on the production of glucose and xylose using different exogenous enzyme loadings. In this study, a consolidated pretreatment and hydrolysis process consisting of a moderate chemical pretreatment at temperatures below 75°C followed by enzymatic hydrolysis using an in-house enzyme cocktail was used to evaluate engineered transgenic feedstocks. The carbohydrate compositional analysis showed no significant difference in the amounts of glucan and xylan between the transgenic maize plants expressing CWD enzyme(s) and the control plants. Hydrolysis results demonstrated that transgenic plants expressing CWD enzymes achieved up to 141% higher glucose yield and 172% higher xylose yield over the control plants from enzymatic hydrolysis under the experimental conditions. The hydrolytic performance of a specific xylanase (XynA) expressing transgenic event (XynA.2015.05) was heritable in the next generation, and the improved properties can be achieved even with a 25% reduction in exogenous enzyme loading. Simultaneous saccharification and fermentation of biomass hydrolysates from two different transgenic maize lines with yeast (Saccharomyces cerevisiae D5A) converted 65% of the biomass glucan into ethanol, versus only a 42% ethanol yield with hydrolysates from control plants, corresponding to a 55% improvement in ethanol production.  相似文献   

17.
The interaction between Penicillium notatum phospholipase B and divalent cations such as Ca2+ and Mg2+ was studied. When the purified enzyme, present at concentrations of submicrogram to microgram per ml, was incubated with submillimolar to millimolar concentrations of CaCl2 or MgCl2, the enzymatic activity was remarkably decreased (to no more than 30% of original activity, when the enzyme was incubated with 2 mM CaCl2 for 15 min). The inhibitory effect of divalent cations was reversible, since dialysis against a metal chelator, such as EDTA or EGTA, substantially restored the enzymatic activity. Atomic absorption analysis showed the purified enzyme molecule to be present in a complex with Ca2+ at a ratio approaching 1:1, and this Ca2+ binding was shown to be extremely tight, since repeated dialyses of the enzyme molecules against EDTA or EGTA could remove the divalent cations only in a gradual manner. During this process, the enzyme activity increased also gradually. The remnant fraction of tightly bound Ca2+ was released from the enzyme molecule after the denaturation of the enzyme by treatment with guanidine hydrochloride, and the apoenzyme recovered its substantial activity after removal of the denaturing agent by dialysis. On the other hand, the content of Mg2+ in the purified enzyme molecule was lower than that of Ca2+, and the association of Mg2+ with the enzyme was much weaker in comparison to that of Ca2+. Atomic absorption analysis of the enzyme exposed to exogenous Ca2+ showed a fast removal, by dialysis, of unbound and weakly bound divalent cation, followed by a gradual removal of endogenous Ca2+ and a concomitant increase of enzymatic activity, which are similar to data obtained for the purified enzyme. Results shown in this report suggest some regulatory roles of divalent cations, especially of Ca2+, in the enzymatic function of P. notatum phospholipse B.  相似文献   

18.
Yang CA  Cheng CH  Liu SY  Lo CT  Lee JW  Peng KC 《The FEBS journal》2011,278(18):3381-3394
Although L-amino oxidase (LAAO; EC 1.4.3.2) has been reported to be a potent antibacterial agent, the mechanism responsible for its antibacterial activity has not been identified. The present study aimed to identify the mechanism responsible for the antibacterial activity of Th-LAAO, an LAAO recently isolated from the extracellular proteins of Trichoderma harzianum ETS 323, at the same time as elucidating the nature of this enzyme. The results obtained indicate that the enzyme activity and structure of Th-LAAO are stable at pH 6-8 and less stable at both pH 4-5.5 and pH 9. At pH 7.0, the optimum temperature for Th-LAAO was found to be 40 °C, comprising the temperature at which enzymatic activity is greatest, with enzymatic activity deceasing with further increases in temperature as a result of thermal denaturation of the enzyme, leading to partial denaturation at 50 °C. The results obtained by confocal microscopy and flow cytometry indicate that Th-LAAO interacts with bacteria to cause membrane permeabilization, and this interaction may be promoted by the amphipathic sequence in Th-LAAO and other cytotoxic LAAOs located at the N-terminus. The findings of increased exogenous H(2) O(2) production and reactive oxidative species accumulation in Th-LAAO-treated bacteria indicate that reactive oxidative species accumulation may trigger forms of cell damage, including lipid peroxidation and DNA strand breakage that results in bacterial growth inhibition. Taken together, the results indicate that the processes of bacterial interaction, membrane permeabilization and H(2)O(2) production are involved in the mechanism responsible for the antibacterial activity of Th-LAAO.  相似文献   

19.
A detailed comparison of the interaction of beta-adrenergic receptors with adenylate cyclase stimulation and modification of this interaction by guanine nucleotides has been made in two model systems, the frog and turkey erythrocyte. Objective analysis of the data was facilitated by the development of new graphical methods which involve the use of logit-logit transformations of percent receptor occupancy versus percent enzyme stimulation plots (coupling curves). Receptor-cyclase coupling in turkey erythrocyte membranes demonstrates a proportional relationship between receptor occupancy and adenylate cyclase activation and is unaffected by exogenous guanine nucleotides. By comparison, the proportional relationship of receptor occupancy and adenylate cyclase activation observed in frog erythrocyte membranes in the absence of guanine nucleotides is modified by the addition of exogenous guanine nucleotides such that a greater fractional enzyme stimulation is elicited by low receptor occupancy. Methodological criteria crucial for valid comparison of receptor occupancy and adenylate cyclase activity are delineated. In addition, the possible molecular mechanisms of receptor-cyclase coupling which might give rise to the coupling curves observed are discussed.  相似文献   

20.
A detailed comparison of the interaction of β-adrenergic receptors with adenylate cyclase stimulation and modification of this interaction by guanine nucleotides has been made in two model systems, the frog and turkey erythrocyte. Objective analysis of the data was facilitated by the development of new graphical methods which involve the use of logit-logit transformations of percent receptor occupancy versus percent enzyme stimulation plots (coupling curves). Receptor-cyclase coupling in turkey erythrocyte membranes demonstrates a proportional relationship between receptor occupancy and adenylate cyclase activation and is unaffected by exogenous guanine nucleotides. By comparison, the proportional relationship of receptor occupancy and adenylate cyclase activation observed in frog erythrocyte membranes in the absence of guanine nucleotides is modified by the addition of exogenous guanine nucleotides such that a greater fractional enzyme stimulation is elicited by low receptor occupancy. Methodological criteria crucial for valid comparison of receptor occupancy and adenylate cyclase activity are delineated. In addition, the possible molecular mechanisms of receptor-cyclase coupling which might give rise to the coupling curves observed are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号