首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development and survival of the immature stages of an aphidophagous ladybeetle, Propylea dissecta (Mulsant) was investigated at five constant temperatures, viz. 20, 25, 27, 30 and 35°C, using Aphis gossypii Glover as prey. Developmental period of all the life stages were significantly affected with change in constant temperature and developmental rate increased with increase in temperature. Theoretical lower thermal threshold for complete development and thermal constant was 10.39°C and 465.11 Day‐degrees, respectively. Of the various life stages, first instar larvae were most susceptible to mortality at temperatures between 20 and 30°C, whilst pre‐pupae suffered least mortality. Egg‐mortality was maximum at 35°C. Female biased sex ratios were obtained at all five temperatures tested with higher proportion of females at the extremes of temperature, thus suggesting that females are more thermal‐tolerant. Lowest mortality of immature stages with maximum larval survival and adult emergence was recorded at 27°C, while reverse was the case at 35°C. Thus, 27°C may be considered best for the laboratory rearing of P. dissecta.  相似文献   

2.
The effect of temperature on the development and fecundity of Sancassania polyphyllae fed on tissues of Polyphylla fullo larvae was studied at 15, 20, 25, 30, and 35 ± 1°C and 65 ± 10% RH in a dark incubator. Mean developmental period of immature stages decreased significantly with increasing temperatures from 15 to 30°C. Developmental periods at 30–35°C were not significantly different. The estimated lower developmental thresholds of the various immature stages ranged between 10.1 and 11.5°C. The thermal constant for the egg-to-female adult was 93.5 degree-days. The pre-oviposition, oviposition, and post-oviposition periods and female longevity were significantly longer at 15°C than at higher temperatures. Mean total and daily fecundity were the highest at 25°C, which were significantly different from those obtained at 15, 20 and 30°C. The net reproductive rate (R 0) was the highest at 25°C (588.3 ♀/♀). The longest mean generation time (T 0) occurred at 15°C (36 days) and the shortest occurred at 30°C (9.2 days). The highest intrinsic rate of increase (r m) for S. polyphyllae was observed at 25 (0.61 ♀/♀/day) and 30°C (0.62 ♀/♀/day).  相似文献   

3.
The life table of the indigenous Neoseiulus californicus was studied at different temperatures and 65 ± 5% relative humidity under conditions of 16 h light : 8 h dark (LD 16:8). The total developmental period from egg to adult varied from 3.0 to 14.0 days at 15 to 35°C. Survival to adulthood ranges from 86.21 to 93.94%, with the highest rate at 25°C. The lower threshold temperature from egg to adult stages of females and males was 10.84 and 10.72°C, respectively, and the thermal constant was 57.14 degree‐days (DD) for females and 56.18 DD for males. Total number of eggs laid by each female was the highest (70.38 eggs) at 25°C, whereas average daily fecundity was the highest (3.69 eggs/female/day) at 30°C. The net reproductive rate was the highest (48.49) at 25°C and lowest (26.18) at 30°C. Mean generation time decreased from 19.04 to 11.47 days with increasing temperature from 20 to 30°C. Both intrinsic rate of natural increase (0.284) and finite rate of increase (1.32) were maximum at 30°C. Adult longevity was the highest (42.75 days for females and 32.60 days for males) at 20°C and lowest (22.70 days for females and 15.30 days for males) at 30°C. Sex ratio was female biased and was the highest (78.08) at 25°C and lowest (70.24) at 30°C. Developmental data of five constant temperatures, temperature thresholds and thermal requirements may be used to predict the occurrence, number of generations and population dynamics of N. californicus as an important biocontrol agent of Tetranychus urticae.  相似文献   

4.
Abstract The effect of seven constant temperatures of 15, 20, 25, 27, 30, 35 and 37°C on developmental time of Neoseiulus barkeri Hughes were determined in laboratory conditions under 65%± 5% RH and a photoperiod of 12 : 12 (L : D) h on nymphal stages of Tetranychus urticae Koch. Total developmental time of females (from egg to adult emergence) at the above‐mentioned temperatures was 26.59, 14.43, 6.32, 5.64, 4.59, 3.98 and 4.67 days, respectively. Developmental rate of the N. barkeri increased as temperature increased from 15 to 35°C, but declined at 37°C. A linear and two nonlinear models were fitted to developmental rate of immature stages of N. barkeri to predict the developmental rate as a function of temperature, as well as to estimate the thermal constant (K) and critical temperatures (i.e., Tmin, Topt and Tmax). The estimated values of the Tmin and K for total developmental time using the linear model were 12.07°C and 86.20 degree‐days (DD), respectively. The Tmin and Tmax estimated by the Sharpe‐Schoolfield‐Ikemoto (SSI) model were 11.90°C and 37.41°C, respectively. The estimated Topt for overall immature stage development of N. barkeri by the Lactin and SSI models were 33.89°C and 24.51°C, respectively. Based on the biological criteria of model evaluation, the linear and SSI models were found to be the best models for describing the developmental rate of overall immature stages of N. barkeri and estimating the temperature thresholds.  相似文献   

5.
6.
The developmental time and survival of immature stages of Neoseiulus californicus were studied at nine constant temperatures (12, 16, 24, 24, 28 32, 36, 38 and 40°C), 60–70% RH, and a photoperiod of 16 : 8 (L : D) h. The total mortality of immature N. californicus was lowest at 24°C (4.5%) and highest at 38°C (15.2%). The total developmental time decreased with increasing temperature between 12°C (18.38 days) and 32°C (2.98 days), and increased beyond 32°C. The relationship between the developmental rate and temperature was fitted by five nonlinear developmental rate models (Logan 6, Lactin 1, 2 and Briere 1, 2). The nonlinear shape of temperature development was best described by the Lactin 1 model (r2 = 0.98). The developmental variation of each stage was well described by the three‐parameter Weibull distribution model (r2 = 0.91–0.93). The temperature‐dependent developmental models of N. californicus developed in this study could be used to determine optimal temperature conditions for its mass rearing, to predict its seasonal population dynamics in fruit tree orchards or greenhouse crops, or to develop a population dynamics model of N. californicus.  相似文献   

7.
The effects of temperature on the development and survival of Lycaeides argyrognomon were examined in the laboratory. The eggs, larvae and pupae were reared at temperatures of 15, 17.5, 20, 25, 30 and 33°C under a long‐day photoperiod of 16‐h light and 8‐h darkness. The survival rates of the first–third instars ranged from 40.0 to 82.4%. The mortalities of the fourth instar were lower than those of the first–third instars. The development time of the overall immature stage decreased from 78.33 days at 15°C to 21.07 days at 30°C, and then increased to 24.33 days at 33°C. The common linear model and the Ikemoto–Takai model were used to estimate the thermal constant (K) and the developmental zero (T0). The values of T0 and K for the overall immature stages were 10.50°C and 418.83 degree‐days, and 9.71°C and 451.68 degree‐days by the common model and the Ikemoto–Takai model, respectively. The upper temperature thresholds (Tmax) and the optimal temperatures (Topt) of the egg, the first–third instars and the overall immature stages were estimated by the three nonlinear models. The ranges of Topt estimated were from 30.33°C to 32.46°C in the overall immature stages and the estimates of Tmax of the overall immature stages by the Briere‐1 and the Briere‐2 models were 37.18°C and 33.00°C, respectively. The method to predict the developmental period of L. argyrognomon using the nonlinear models was discussed based on the data of the average temperature per hour.  相似文献   

8.
In this study, we evaluated the effect of temperature on the development and reproductive biology of Serangium japonicum (Coleoptera: Coccinellidae) at seven constant temperature regimes (17, 20, 23, 26, 29, 32 and 35°C) for its effect as a predator of Bemisia tabaci (Homoptera: Aleyrodidae). Results indicated that the duration of the egg, larval and pupal stages were significantly affected by temperature. The developmental time gradually declined with the increase of temperature from 17 to 29°C, however an extension in the developmental periods was observed in the temperature range of 32 to 35°C. The survival rates of different insect stages were stable at temperatures between 20 and 32°C; however at extreme temperatures of 35°C, a sharp decrease was evident. The highest fecundity of the female (387.2 eggs per female) was recorded at 20°C. Based on these results, life tables of S. japonicum were constructed for temperatures in the range 20–35°C. The maximum reproductive rate (R 0=279.9) occurred at 26°C. The maximum values for innate capacity for increase (r m=0.1131) and the finite rate of increase (λ=1.1197) occurred at 29°C. The mean generation time (T) decreased with increased temperature, the longest of which was 76.0 days (at 20°C) and the shortest was 36.6 days (at 32°C). These results offer valuable insight on the importation and establishment of S. japonicum into new environments with diverse temperature regimes.  相似文献   

9.
Many species of mealybugs (Hemiptera: Pseudococcidae) are serious pests of economically important crops worldwide. We evaluated the influence of constant temperatures: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34°C on the life history and demographic parameters of Spalgis epius (Lepidoptera: Lycaenidae), a candidate biological control agent of various species of mealybugs. No eggs completed their development at 14 and 34°C. Egg-to-adult developmental time significantly decreased from 89.9 days at 16°C to 20.4 days at 32°C. The estimated lower temperature threshold of 10.2°C and 416.6 degree-days were required to complete egg-to-adult development. The mortality of immature stages was maximum at 16 and 32°C and minimum at 28°C. The highest lifetime fecundity was recorded at 28°C and it significantly decreased at 32°C. The longevity of adults was about three times more at 16°C than at 30 and 32°C. The net reproductive rate (R 0) significantly increased with increased temperatures up to 28°C and significantly decreased at 32°C. The mean generation time (T) significantly decreased with increased temperature up to 30°C, but it significantly increased at 32°C. The intrinsic rate of population increase (r m ) was highest at 30°C. The finite rate of increase (λ) was significantly greater at 30°C than at other temperatures. These data suggest that S. epius can develop, reproduce and survive in a wide range of temperatures and thus could be regarded a potential biological control agent of mealybugs.  相似文献   

10.
The effect of temperature on the life table of Acyrthosiphon pisum reared on Pisum sativum was evaluated under laboratory conditions using temperatures of 10, 15, 20, 25, 30, and 35°C. The development time of juvenile A. pisum decreased with increasing temperature (from 21.3 days at 10°C to 4.7 days at 35°C). Adult longevity also decreased with increasing temperature (from 53.2 days at 10°C to 2.3 days at 35°C). Interestingly, 70% and 25% of A. pisum nymphs reared at 30°C and 35°C, respectively, successfully developed into adults. These temperatures have previously been considered unsuitable for A. pisum development. However, adult aphids reared at 30°C and 35°C failed to reproduce. Linear regression analysis revealed that the lower development threshold of A. pisum was 153.1 degree‐days above 1.9°C. Maximal average reproductive capability was observed at 10°C for A. pisum adults, with each adult producing more than 120 nymphs. The intrinsic rate of increase (rm) of A. pisum increased from 0.124/day at 10°C to 0.337/day at 25°C, whereas opposite trends were observed for the net reproductive rate (R0) and the mean generation time (GT). At 20°C and 25°C, the intrinsic rate of increase of A. pisum was significantly higher than at 10°C and 15°C (P < 0.0001), indicating that 20°C and 25°C are within the optimal range for the growth of A. pisum, and that 30°C is beyond the upper threshold limit for reproduction, which involves a temperature range that is narrower than that of the survival range (upper limit is unknown, but above 35°C).  相似文献   

11.
Reproduction, survival, and life table parameters of the predatory mite Cheyletus malaccensis Oudemans were evaluated at six constant temperatures: 17.5, 20, 25, 30, 32.5 and 35°C, feeding on Tyrophagus putrescentiae (Schrank). Preoviposition period of fertilized and virgin females varied with temperature from ca. 9 days at 17.5°C to ca. 1.5 day at 32.5°C and then increased to ca. 3 days at 35°C. Virgin female oviposition period was significantly shorter than for fertilized females at the temperatures examined with the exception of 17.5°C. The mean total number of eggs per fertilized (169.7 ± 6.6) and virgin female (60.7 ± 4.3) was highest at the temperature of 30°C. The data indicated a significant positive and nearly doubling effect of fertilization on female fecundity at the temperatures examined with the exception of 17.5°C. Age-specific fecundity was described by a temperature dependent model from which the maximum daily fecundity rate was estimated for fertilized and virgin females at 10.3 (at 30°C) and 6.8 (at 32.5°C) eggs/female, respectively. Virgin female longevity was significantly shorter than for fertilized females at 20, 30 and 32.5°C, and decreased from ca. 57 days at 17.5°C to ca. 17 days at 35°C. The Weibull function that was used to describe the age specific survival of fertilized and virgin females produced excellent fits to the survival data. Estimates of intrinsic rate of increase, net reproductive rate, mean generation time, doubling time and finite rate of increase, were obtained. The rm value increased with temperature from 0.03 (day−1) at 17.5°C to 0.21 (day−1) at 32.5°C, after which it decreased to 0.15 (day−1) at 35°C. These data indicate that C. malaccensis can reproduce at temperatures between 17.5 and 35°C and can be used for biological control of astigmatid mites within the temperature range where the pest occurs.  相似文献   

12.
Eretmocerus sp. nr. furuhashii (Hymenoptera: Aphelinidae) is an indigenous parasitoid of Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae) from southern China; the effects of constant temperatures on the life history of E. sp. nr. furuhashii were examined in the laboratory. The developmental period ranged from 39.2 days at 20°C to 12.40 days at 32°C. A total of 263.4 degree-days were required to complete development with a lower developmental threshold temperature of 11.1°C. Of the eggs produced, 59.3% completed development at 20°C with completion increasing to 71.5% at 26°C. Adult female longevity was 10.8 days at 20°C and 5.2 days at 32°C while the mean daily offspring reproduced per female was highest at 29°C with 5.9 offspring. Adult oviposition peaked three days after emergence at 26, 29 and 32°C, and four days post-emergence at 20°C and 23°C. The total numbers of offspring produced per female ranged from 25.7 individuals at 32°C to 41.1 individuals at 20°C. The sex ratio had a female bias and ranged from 0.72 at 17°C to 0.51 at 35°C. The intrinsic rate of increase was 0.1727 at 29°C followed with 0.1606 at 32°C. Results indicated that E. sp. nr. furuhashii reaches its maximum biological potential at temperatures ranging from 26°C to 32°C.  相似文献   

13.
Oomyzus sokolowskii is alarval-pupal parasitoid of diamondback moth, Plutella xylostella. In a host stage preference test, the parasitoid parasitised all larval and pupal stages, but exhibited a strong preference for larvaeover prepupae or pupae, and did not show a preference among the larval instars. At 25°C, the developmental time, number and sex ratio of offspring per host pupa, and successful parasitism did not differ significantly among parasitoids reared from host larvae of different instars, indicating similar host suitability between larvae of different instars. Mean developmental times from egg to adult at 20, 22.5, 25, 30, 32.5, and 35°C were 26.5,21.0, 16.0, 12.7, 11.9 and 13.4 days, respectively. The favourable temperature range for development, survival, and reproduction of the parasitoid was 20--30°C. However, wasps that developed and emerged at a favourable temperature could parasitise effectively at 32--35°C for 24 hours. Life-fertility table studies at 20, 25, and 30°C showed that each female wasp on average parasitised 3.1, 13.2, 6.8 larvae of diamondback moth and produced 20.5, 92.1, 50.4 offspring, respectively, during her lifetime. The highest intrinsic rate of natural increase (r m) of 0.263 female/day was reached at 30°C as a result of the short mean generation time at this temperature compared to that at 20 and 25°C, suggesting that the parasitoid had the highest potential for population growth at relatively high temperatures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The predatory mite Typhlodromus bagdasarjani Wainstein and Arutunjan (Acari: Phytoseiidae) is an indigenous and widespread species of the Middle East fauna. In this paper we assess the effect of temperature on developmental rate and reproduction potential of T. bagdasarjani under laboratory conditions. The development of this species was determined at 15, 20, 25, 30, 35 and 37.5 ± 1°C, 60 ± 10% RH and L16:D8 h photoperiod. The total developmental time averaged 28.2, 15.0, 8.9, 7.6, 7.2 and 7.4 days at 15–37.5°C, respectively, when feeding on immature stages of two-spotted spider mite, Tetranychus urticae Koch. The lower developmental threshold (T 0 ) and thermal constant (K) for the development of this predator were estimated 9.2°C and 162 degree-days by the Ikemoto linear model. The life table parameters were estimated at 15–35°C. The shortest life span of females at 35°C was 45.0 days, followed by 50.7, 50.9, 103.3 and 136.8 days at 30, 25, 20 and 15°C, respectively. Mated females laid on average 19.9, 26.3, 41.1, 39.6 and 31.3 eggs per female at 15–35°C, respectively. The intrinsic rate of increase (r m ) and finite rate of increase (λ) increased significantly with increasing temperature. The r m values ranged from 0.021 (15°C) to 0.186 (35°C) days−1. The highest value of net reproductive rate (R 0) was 13.6 females progeny/female/generation at 25°C. The results demonstrated that T. bagdasarjani is well adapted to high temperatures. However, the efficiency to control spider mites may be affected by behavioral characteristics of the predator and its prey under real conditions.  相似文献   

15.
16.
The development, survivorship, longevity, reproduction, and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama were evaluated at 10°C, 15°C, 20°C, 25°C, 28°C, 30°C and 33°C. The populations reared at 10°C and 33°C failed to develop. Between 15°C and 30°C, mean developmental period from egg to adult varied from 49.3 days at 15°C to 14.1 days at 28°C. The low‐temperature developmental thresholds for 1st through 5th instars were estimated at 11.7°C, 10.7°C, 10.1°C, 10.5°C and 10.9°C, respectively. A modified Logan model was used to describe the relationship between developmental rate and temperature. The survival of the 3rd through 5th nymphal instars at 15–28°C was essentially the same. The mean longevity of females increased with decreasing temperature within 15–30°C. The maximal longevity of individual females was recorded 117, 60, 56, 52 and 51 days at 15°C, 20°C, 25°C, 28°C and 30°C, respectively. The average number of eggs produced per female significantly increased with increasing temperature and reached a maximum of 748.3 eggs at 28°C (P<0.001). The population reared at 28°C had the highest intrinsic rate of increased (0.199) and net reproductive rate (292.2); and the shortest population doubling time (3.5 days) and mean generation time (28.6 days) compared with populations reared at 15–25°C. The optimum range of temperatures for D. citri population growth was 25–28°C.  相似文献   

17.
Laboratory studies were conducted to assess the effect of temperature on the development of the eggs of Dociostaurus maroccanus (Thunberg) (Orthoptera, Acrididae) during anatrepsis (stages I–XIV) and during catatrepsis (stages XV–XX). The developmental rates of anatrepsis were studied at five constant temperatures ranging from 10 to 30°C. Egg development occurred over the entire range but at 10°C the embryos were unable to complete anatrepsis. The relationship between temperature and developmental times for completing anatrepsis was analysed by the non‐linear Logan type III model. The optimal temperature estimated for the development of eggs during anatrepsis was 24.7°C; the lower and upper thermal thresholds were 9°C and 31°C, respectively. Once the embryos completed anatrepsis, only those incubated at 15°C continued morphogenesis beyond stage XIV (diapause stage) without a low‐temperature exposure period. The developmental rate of catatrepsis was studied at four constant temperatures ranging from 15°C to 30°C after exposure to low‐temperature, 10°C, for 30, 60 or 90 days. For catatrepsis, temperature and developmental time were linearly and inversely related. Linear regression was used to estimate the lower developmental threshold and the degree days requirements for catatrepsis. Both decreased with longer exposure to the low temperature; the former from 13.8°C to 10.5°C and the latter from 212.8 to 171.5 degree days, following 30 and 90 days at 10°C, respectively. Our results improve the ability of decision support systems for Mediterranean locust pest management by providing better forecasts to land managers and pest advisors.  相似文献   

18.
The cycad aulacaspis scale (CAS), Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae), is a serious pest of ornamental cycads in the southeastern United States. In Florida, CAS was first reported in Miami in 1996 and is now present in 43 Florida counties. Chemical control of CAS can be effective, but it is expensive, and insecticides must be frequently and regularly applied. Recent surveys of natural enemies in Thailand identified a new potential biological control agent of CAS. The objective of this study was to examine the temperature requirements and consumption rates of Phaenochilus kashaya Giorgi and Vandenberg (Coleoptera: Coccinellidae). Survival, developmental time and number of scales consumed by P. kashaya were measured at four constant temperatures (20, 25, 30 and 35°C). In addition, adult longevity and consumption were recorded at three constant temperatures (20, 25 and 30°C). Phaenochilus kashaya completed development to adulthood at temperatures ranging from 20 to 30°C. The highest survival rate (48%) was obtained at 25°C, and the accumulated degree-days for this species was 714. Phaenochilus kashaya is a voracious predator of CAS, consuming 380 scales during the larval stage and an estimated 4700 scales during the adult stage. Adult longevity varied from 59 days at 30°C to 220 days at 20°C for females, and 31 days at 30°C to 148 days at 20°C for males. The intrinsic rate of increase (r m) was 0.34 at 20°C, which is high compared with other coccinellid species. According to this study, P. kashaya has the potential to be an effective biological control agent of the CAS in Florida.  相似文献   

19.
We investigated the effect of temperature on development and demographic parameters such as the intrinsic rate of natural increase (r m) of the two spider mite species Tetranychus merganser Boudreaux and T. kanzawai Kishida at eleven constant temperatures ranging from 15 to 40°C at intervals of 2.5°C. Both male and female T. merganser and T. kanzawai completed development from egg to adult at temperatures ranging from 15 to 37.5°C. The longest developmental duration of immature stages was found at 15°C and the shortest developmental duration was found at 35°C for both species. Using linear and non-linear developmental rate models, the lower thermal thresholds for egg-to-adult (female and male) and egg-to-egg development were estimated as 12.2–12.3°C for T. merganser and as 10.8°C for T. kanzawai. The highest developmental rates were observed at around 35°C, whereas the upper developmental thresholds were around 40°C for both species. In fact, at 40°C, a few eggs of either species hatched, but no larvae reached the next stage. The r m-values of T. merganser ranged from 0.072 (15°C) to 0.411 day−1 (35°C), whereas those of T. kanzawai ranged from 0.104 (15°C) to 0.399 (30°C). The r m-values were higher for T. kanzawai than for T. merganser at temperatures from 15 to 30°C, but not at 35°C (0.348 day−1). Total fecundity of T. merganser was also higher than that of T. kanzawai at 35°C. These results indicate that higher temperatures favor T. merganser more than T. kanzawai.  相似文献   

20.
Thermal requirements of larval weatherfish Misgurnus fossilis were investigated in terms of growth, survival and aerobic performance. Growth and survival of M. fossilis larvae acclimated to five temperatures (11, 15, 19, 23 and 27° C) were measured over 25 days. In the upper temperature treatments (19, 23 and 27° C), survival of larvae was stable throughout the entire rearing period (>75%), whereas 11 and 15° C resulted in severe declines in survival (to <10%). Growth of larvae (expressed as dry mass and total length) was highest at 19 and 23° C, but significantly decreased at 27° C. Routine metabolic rate of 3 days post‐hatch larvae was estimated as oxygen consumption rate (?O2) during acute exposure (30 min to 1 h) to seven temperatures (11, 15, 19, 23, 27, 31 and 35° C). Larval oxygen uptake increased with each consecutive temperature step from 11 to 27° C, until a plateau was reached at temperatures >27° C. All larvae of the 35° C regime, however, died within the ?O2 measurement period. M. fossilis larvae show greater than expected tolerance of high temperatures. On the other hand, low temperatures that are within the range of likely habitat conditions are critical because they might lead to high mortality rates when larvae are exposed over periods >10 days. These findings help to improve rearing conditions and to identify suitable waters for stocking and thus support the management of re‐introduction activities for endangered M. fossilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号