共查询到20条相似文献,搜索用时 15 毫秒
1.
Toll-like receptors (TLR) mediate pathogen recognition in vertebrate species through detection of conserved microbial ligands. Families of TLR molecules have been described from the genomes of the teleost fish model species zebrafish and Takifugu, but much research remains to characterize the full length sequences and pathogen specificities of individual TLR members in fish. While the majority of these pathogen receptors are conserved among vertebrate species with clear orthologues present in fish for most mammalian TLRs, several interesting differences are present in the TLR repertoire of teleost fish when compared to that of mammals. A soluble form of TLR5 has been reported from salmonid fish and Takifugu rubripes which is not present in mammals, and a large group of TLRs (arbitrarily numbered 19-23) was identified from teleost genomes with no easily discernible orthologues in mammals. To better understand these teleost adaptations to the TLR family, we have isolated, sequenced, and characterized the full-length cDNA and gene sequences of TLR5S, TLR20, and TLR21 from catfish as well as studied their expression pattern in tissues. We also mapped these genes to bacterial artificial chromosome (BAC) clones for genome analysis. While TLR5S appeared to be common in teleost fish, and TLR21 is common to birds, amphibians and fish, TLR20 has only been identified in zebrafish and catfish. Phylogenetic analysis of catfish TLR20 indicated that it is closely related to murine TLR11 and TLR12, two divergent TLRs about which little is known. All three genes appear to exist in catfish as single copy genes. 相似文献
2.
In silico identification and expression analysis of 12 novel CC chemokines in catfish 总被引:4,自引:0,他引:4
Chemokines, a superfamily of chemotactic cytokines involved in recruitment, activation, and adhesion of a variety of leukocyte
types to inflammatory foci, are a crucial component of the immune system of Sarcopterygiian vertebrates. Although all mammalian
chemokines are believed to have been found, the status of these molecules in Actinopterygii was unknown until recently. The
identification of chemokines in fish species has been complicated by low sequence conservation and confusion over expected
numbers. Earlier discoveries of single fish chemokines coupled with rapidly expanding genetic resources in these species have
recently provided a foundation for large-scale in silico discoveries of these important immune regulators. We report here
the identification and expression analysis of 12 new CC chemokine sequences from catfish. When added to our previous report
of 14 catfish CC chemokines, the number of CC chemokines in catfish now stands at 26, two more than known from humans. Establishing
orthologous relationships among the majority of catfish CC chemokines, a newly available set of chicken CC chemokines, and
their mammalian counterparts remain difficult, suggesting high levels of duplication and divergence within individual species. 相似文献
3.
4.
Konno K Wakabayashi Y Akashi-Takamura S Ishii T Kobayashi M Takahashi K Kusumoto Y Saitoh S Yoshizawa Y Miyake K 《Biochemical and biophysical research communications》2006,339(4):1076-1082
Toll-like receptors (TLRs) recognize microbial products and induce immune responses. Their subcellular distribution is believed to be optimized for their pathogen recognition. Little is known, however, about molecular mechanisms regulating the subcellular distribution of TLR. Lipopolysaccharide, a principal membrane component of the Gram-negative bacteria, is recognized by the receptor complex consisting of Toll-like receptor 4 (TLR4) and MD-2. We here show that a novel molecule, a PRotein Associated with Tlr4 (PRAT4B), regulates cell surface expression of TLR4. PRAT4B has a signal peptide followed by a mature peptide. PRAT4B is associated with the hypoglycosylated, immature form of TLR4 but not with MD-2 or TLR2. Downregulation of PRAT4B mRNA with small interfering RNA decreased cell surface TLR4 on HEK293 cells. These results suggest a novel mechanism regulating the subcellular distribution of TLR4. 相似文献
5.
Multiple CC chemokines in channel catfish and blue catfish as revealed by analysis of expressed sequence tags 总被引:6,自引:0,他引:6
Chemokines represent a superfamily of chemotactic cytokines involved in recruitment, activation and adhesion of a variety of leukocyte types to inflammatory foci, as well as in the organization and maintenance of lymphoid organ architecture and in normal developmental processes. Nearly all chemokines have been identified in human and mouse, but only a handful of fish chemokines have been identified. Here we describe 14 distinct chemokines from channel catfish and blue catfish identified by analysis of 30,000 expressed sequence tags. Based on sequence analysis, sequence similarity, and the arrangement of the conserved cysteine residues, all 14 chemokines were identified as members of the CC subfamily. Phylogenetic analysis did not reveal clear evidence of orthology of the catfish and human or mouse chemokines. Similarity analysis indicated that nine of the 14 CC chemokines were identified for the first time in fish. The availability of this pool of catfish CC chemokines should facilitate rapid identification and phylogenetic analysis of CC chemokines from other fish and related species. 相似文献
6.
The Toll-like receptors: analysis by forward genetic methods 总被引:1,自引:1,他引:1
Beutler B 《Immunogenetics》2005,57(6):385-392
Many genes, and conceivably most genes, are constitutively expressed yet have conditional functions. Their products are utilized
only under special circumstances, and enforce homeostatic regulation. Mutations do not disclose the function of such genes
unless the proper conditions are applied. The genes that encode the Toll-like receptors (TLRs) fall into this category. The
TLRs represent the principal sensors of infection in mammals. Absent infection, mammals have little need for the TLRs; they
are essential only when microbes gain access to the interior milieu of the host. The function of the TLRs in mammals was first
disclosed by a spontaneous mutation in a locus called Lps, when it was shown by positional cloning to be identical to Tlr4. Random germline mutagenesis has since permitted an estimate of the total number of proteins required for TLR signaling to
the level of tumor necrosis factor (TNF) synthesis and activity, and has also shown that these sensors are extremely broad
in their ability to detect microbes. Ultimately, the TLRs are responsible for most infection-related phenomena, both good
and bad. These include the development of fever, shock, and tissue injury, but also the activation of innate and adaptive
effector mechanisms that lead to the elimination of microbes. 相似文献
7.
8.
Early recognition of invading bacteria by the innate immune system has a crucial function in antibacterial defense by triggering inflammatory responses that prevent the spread of infection and suppress bacterial growth. Toll-like receptor 4 (TLR4), the innate immunity receptor of bacterial endotoxins, plays a pivotal role in the induction of inflammatory responses. TLR4 activation by bacterial lipopolysaccharide (LPS) is achieved by the coordinate and sequential action of three other proteins, LBP, CD14 and MD-2 receptors, that bind lipopolysaccharide (LPS) and present it to TLR4 by forming the activated (TLR4-MD-2-LPS)(2) complex. Small molecules active in modulating the TLR4 activation process have great pharmacological interest as vaccine adjuvants, immunotherapeutics or antisepsis and anti-inflammatory agents. In this review we present natural and synthetic molecules active in inhibiting TLR4-mediated LPS signalling in humans and their therapeutic potential. New pharmacological applications of TLR4 antagonists will be also presented related to the recently discovered role of TLR4 in the insurgence and progression of neuropathic pain and sterile inflammations. 相似文献
9.
Toll-like receptors (TLRs) 3, 7, and 9 are innate immune receptors that recognize nucleic acids from pathogens in endosomes and initiate signaling transductions that lead to cytokine production. Activation of TLR9 for signaling requires proteolytic processing within the ectodomain by endosome-associated proteases. Whether TLR3 requires similar proteolytic processing to become competent for signaling remains unclear. Herein we report that human TLR3 is proteolytically processed to form two fragments in endosomes. Unc93b1 is required for processing by transporting TLR3 through the Golgi complex and to the endosomes. Proteolytic cleavage requires the eight-amino acid Loop1 within leucine-rich repeat 12 of the TLR3 ectodomain. Proteolytic cleavage is not required for TLR3 signaling in response to poly(I:C), although processing could modulate the degree of response toward viral double-stranded RNAs, especially in mouse cells. Both the full-length and cleaved fragments of TLR3 can bind poly(I:C) and are present in endosomes. However, although the full-length TLR3 has a half-life in HEK293T cells of 3 h, the cleaved fragments have half-lives in excess of 7 h. Inhibition of TLR3 cleavage by either treatment with cathepsin inhibitor or by a mutation in Loop1 decreased the abundance of TLR3 in endosomes targeted for lysosomal degradation. 相似文献
10.
11.
An anuran amphibian, South African clawed frog (Xenopus
laevis), is used to study the immune system, as it possesses a set of acquired immune system represented by T and B lymphocytes
and the immunoglobulins. The acquired immune system is impaired throughout the larva and the metamorphosis stage in the amphibians.
On the other hand, the role of innate immune system in the tadpole remains unclear. Recently, insect Toll protein homologues,
namely, Toll-like receptors (TLRs), have been identified as sensors recognizing microbe-pattern molecules in vertebrates.
Whole-genome analysis of Xenopus tropicalis supported the existence of the tlr genes in the frog. In this study, we annotated 20 frog tlr gene nucleotide sequences from the latest genome assembly version 4.1 on the basis of homology and identified cDNAs of the
predicted frog TLR proteins. Phylogenetic analysis showed that the repertoire of the frog TLRs consisted of both fish- and
mammalian-type TLRs. We showed that the frog TLRs are constitutively expressed in the tadpole as well as in the adult frog.
Our results suggest that tadpoles are protected from microbes by the innate system that includes TLRs, despite impaired acquired
immune system in tadpoles. This is the first report on the properties of TLRs in the most primitive terrestrial animals like
amphibia.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
12.
Sato K Yoshimura A Kaneko T Ukai T Ozaki Y Nakamura H Li X Matsumura H Hara Y Ogata Y 《The Journal of biological chemistry》2012,287(30):25163-25172
We have previously shown that a single nucleotide polymorphism rs11536889 in the 3'-untranslated region (UTR) of TLR4 was associated with periodontitis. In this study the effects of this single nucleotide polymorphism on Toll-like receptor (TLR) 4 expression were investigated. Monocytes from subjects with the C/C genotype expressed higher levels of TLR4 on their surfaces than those from subjects with the other genotypes. Peripheral blood mononuclear cells (PBMCs) from the C/C and G/C subjects secreted higher levels of IL-8 in response to lipopolysaccharide (LPS), a TLR4 ligand, than the cells from the G/G subjects. However, there was no significant difference in TLR4 mRNA levels in PBMCs from the subjects with each genotype. After stimulation with tripalmitoylated CSK(4) (Pam(3)CSK(4)), TLR4 mRNA levels increased in PBMCs from both the C/C and G/G subjects, whereas TLR4 protein levels increased in PBMCs from the C/C but not G/G subjects. Transient transfection of a series of chimeric luciferase constructs revealed that a fragment of 3'-UTR containing rs11536889 G allele, but not C allele, suppressed luciferase activity induced by LPS or IL-6. Two microRNAs, hsa-miR-1236 and hsa-miR-642a, were predicted to bind to rs11536889 G allele. Inhibition of these microRNAs reversed the suppressed luciferase activity. These microRNA inhibitors also up-regulated endogenous TLR4 protein on THP-1 cells (the G/G genotype) after LPS stimulation. Furthermore, mutant microRNAs that bind to the C allele inhibited the luciferase activity of the construct containing the C allele. These results indicate that genetic variation of rs11536889 contributes to translational regulation of TLR4, possibly by binding to microRNAs. 相似文献
13.
Takeyuki Shimizu Chiaki Nishitani Hiroaki Mitsuzawa Shigeru Ariki Motoko Takahashi Katsuki Ohtani Nobutaka Wakamiya Yoshio Kuroki 《Biochimica et Biophysica Acta (BBA)/General Subjects》2009,1790(12):1705-1710
Background
We have previously shown that lung collectins, surfactant protein A (SP-A) and surfactant protein D, interact with Toll-like receptor (TLR) 2, TLR4, or MD-2. Bindings of lung collectins to TLR2 and TLR4/MD-2 result in the alterations of signaling through these receptors, suggesting the immunomodulatory functions of lung collectins. Mannose binding lectin (MBL) is another collectin molecule which has structural homology to SP-A. The interaction between MBL and TLRs has not yet been determined.Methods
We prepared recombinant MBL, and analyzed its bindings to recombinant soluble forms of TLR4 (sTLR4) and MD-2.Results
MBL bound to sTLR4 and MD-2. The interactions were Ca2+-dependent and inhibited by mannose or monoclonal antibody against the carbohydrate-recognition domain of MBL. Treatment of sTLR4 or MD-2 by peptide N-glycosidase F significantly decreased the binding of MBL. SP-A bound to deglycosylated sTLR4, and this property did not change in chimeric molecules of SP-A/MBL in which Glu195–Phe228 or Thr174–Gly194 of SP-A were replaced with the corresponding MBL sequences.General Significance
These results suggested that MBL binds to TLR4 and MD-2 through the carbohydrate-recognition domain, and that oligosaccharide moieties of TLR4 and MD-2 are important for recognition by MBL. Since our previous studies indicated that lung collectins bind to the peptide portions of TLRs, MBL and lung collectins interact with TLRs by different mechanisms. These direct interactions between MBL and TLR4 or MD-2 suggest that MBL may modulate cellular responses by altering signals through TLRs. 相似文献14.
Guangyi Jin Christina C. N. Wu Dennis A. Carson Howard B. Cottam 《Nucleosides, nucleotides & nucleic acids》2013,32(12):1391-1397
The synthesis of a guanosine analog in the pyrido[2,3-d]pyrimidine ring system has been accomplished by glycosylation of the preformed aromatic heterocyclic base, which was prepared in 2 steps by condensation of methyl acrylate with guanidine carbonate and methyl cyanoacetate in the presence of sodium methoxide, followed by dehydrogenation. The analog was evaluated in vitro for its ability to modulate the innate immune response by acting as an agonist or as an antagonist of Toll-like receptor (TLR) signaling by measuring cytokine induction or inhibition of induction, respectively, in mouse bone marrow-derived macrophages. Despite its structural similarity to 7-thia-8-oxoguanosine, a known TLR7 agonist, the analog was found to antagonize TLR7-induced cytokine induction in this cell-based assay. 相似文献
15.
The antimicrobial peptide LL-37 is known to have a potent LPS-neutralizing activity in monocytes and macrophages. Recently, LL-37 in gingival crevicular fluids is suggested to be the major protective factor preventing infection of periodontogenic pathogens. In this study, we tried to address the effect of LL-37 on proinflammatory responses of human gingival fibroblasts (HGFs) stimulated with Toll-like receptor (TLR)-stimulant microbial compounds. LL-37 potently suppressed LPS-induced gene expression of IL6, IL8 and CXCL10 and intracellular signaling events, degradation of IRAK-1 and IκBα and phosphorylation of p38 MAPK and IRF3, indicating that the LPS-neutralizing activity is also exerted in HGFs. LL-37 also suppressed the expression of IL6, IL8 and CXCL10 induced by the TLR3 ligand poly(I:C). LL-37 modestly attenuated the expression of IL6 and IL8 induced by the TLR2/TLR1 ligand Pam3CSK4, but did not affect the expression induced by the TLR2/TLR6 ligand MALP-2. Interestingly, LL-37 rather upregulated the expression of IL6, IL8 and CXCL10 induced by another TLR2/TLR6 ligand FSL-1. Thus, the regulatory effect of LL-37 is differently exerted towards proinflammatory responses of HGFs induced by different microbial stimuli, which may lead to unbalanced proinflammatory responses of the gingival tissue to infection of oral microbes. 相似文献
16.
Zhou Z Liu H Liu S Sun F Peatman E Kucuktas H Kaltenboeck L Feng T Zhang H Niu D Lu J Waldbieser G Liu Z 《Fish & shellfish immunology》2012,32(1):186-195
The complement system is important in both innate and adaptive host defense against microbial infection in vertebrates. It contains three pathways: the classical, alternative, and lectin pathways. Complement component factors B and D are two crucial proteases in the alternative pathway. In this study, the genes of complement factors Bf/C2 and Df from channel catfish, Ictalurus punctatus were identified and characterized. Two complement factor B-related genes, Bf/C2A and Bf/C2B, and factor D gene Df were identified. Phylogenetic analysis suggested that Bf/C2A and Bf/C2B is likely orthologous to factor B and factor C2, respectively. Southern blot results suggested that these three genes are all single-copy genes in the catfish genome. The catfish Bf/C2A, Bf/C2B and Df genes were genetically mapped on linkage group 3, 20 and 29, respectively. Bf/C2A and Bf/C2B are highly expressed in liver and kidney, while Df is highly expressed in gill and spleen. After infection with Edwardsiella ictaluri, the expression of Bf/C2A, Bf/C2B and Df genes were found to be remarkably induced in the gill, liver, spleen and kidney at some sampling times, indicating that these three complement factors play a pivotal role in immune responses after the bacterial infection in catfish. 相似文献
17.
Nishitani C Mitsuzawa H Hyakushima N Sano H Matsushima N Kuroki Y 《Biochemical and biophysical research communications》2005,328(2):586-590
Toll-like receptor 4 (TLR4) is a signaling receptor for lipopolysaccharide (LPS) but requires MD-2, a molecule associated with the extracellular TLR4 domain, to respond efficiently to LPS. The purpose of this study was to determine the critical stretch of primary sequence in the TLR4 region involved in MD-2 recognition. TLR4 and TLR4/2a chimera consisting of the TLR4 region Met(1)-Phe(54) and the TLR2 region Ala(53)-Ser(784) were coprecipitated with MD-2, but the deletion mutant TLR4(Delta E24-P34) in which the TLR4 region Glu(24)-Pro(34) was deleted failed to coprecipitate. In agreement with the MD-2 binding, LPS-conjugated beads sedimented TLR4 and TLR4/2a chimera but not TLR2 with MD-2. TLR4(Delta E24-P34) barely coprecipitated with LPS-beads. The cells that had been cotransfected with TLR4(Delta E24-P34) and MD-2 did not induce NF-kappa B activation in response to LPS. These results clearly demonstrate that the amino-terminal TLR4 region of Glu(24)-Pro(34) is critical for MD-2 binding and LPS signaling. 相似文献
18.
Ghosh TK Mickelson DJ Fink J Solberg JC Inglefield JR Hook D Gupta SK Gibson S Alkan SS 《Cellular immunology》2006,243(1):48-57
The cells of innate and adaptive immunity, although activated by different ligands, engage in cross talk to ensure a successful immune outcome. To better understand this interaction, we examined the demographic picture of individual TLR (TLRs 2-9) -driven profiles of eleven cytokines (IFN-alpha/beta, IFN-gamma, IL-12p40/IL-12p70, IL-4, 1L-13, TNF-alpha, IL-1beta, IL-2, IL-10) and four chemokines (MCP-1, MIP1beta, IL-8, and RANTES), and compared them with direct T-cell receptor triggered responses in an assay platform using human PBMCs. We find that T-cell activation by a combination of anti-CD3/anti-CD28/PHA induced a dominant IL-2, IL-13, and Type-II interferon (IFN-gamma) response without major IL-12 and little Type-I interferon (IFN-alphabeta) release. In contrast, TLR7 and TLR9 agonists induced high levels of Type-I interferons. The highest IFN-gamma levels were displayed by TLR8 and TLR7/8 agonists, which also induced the highest levels of pro-inflammatory cytokines IL-12, TNF-alpha, and IL-1beta. Amongst endosomal TLRs, TLR7 displayed a unique profile producing weak IL-12, IFN-gamma, TNF-alpha, IL-1beta, and IL-8. TLR7 and TLR9 resembled each other in their cytokine profile but differed in MIP-1beta and MCP1 chemokine profiles. Gram positive (TLR2, TLR2/6) and gram negative (TLR4) pathogen-derived TLR agonists displayed significant similarities in profile, but not in potency. TLR5 and TLR2/6 agonists paralleled TLR2 and TLR4 in generating pro-inflammatory chemokines MCP-1, MIP-1beta, RANTES, and IL-8 but yielded weak TNF-alpha and IL-1 responses. Taken together, the data show that diverse TLR agonists, despite their operation through common pathways induce distinct cytokine/chemokine profiles that in turn have little or no overlap with TCR-mediated response. 相似文献
19.
20.
Mechanism of up-regulation of human Toll-like receptor 3 secondary to infection of measles virus-attenuated strains 总被引:4,自引:0,他引:4
Tanabe M Kurita-Taniguchi M Takeuchi K Takeda M Ayata M Ogura H Matsumoto M Seya T 《Biochemical and biophysical research communications》2003,311(1):39-48
PolyI:C, a synthetic double-stranded (ds)RNA, and viruses act on cells to induce IFN-beta which is a key molecule for anti-viral response. Although dsRNA is a virus-specific signature and a ligand for human Toll-like receptor 3 (TLR3), largely uncharacterized multiple pathways associate virus-mediated IFN-beta induction. Here, we demonstrated that laboratory-adapted but not wild-type strains of measles virus (MV) up-regulated TLR3 expression both in dendritic cells and epithelial cell line A549. The kinetics experiments with the laboratory MV strain revealed that TLR3 was induced late compared to IFN-beta and required new protein synthesis. Furthermore, neutralizing antibodies against IFN-beta or IFNAR (Interferon-alpha/beta receptor) suppressed MV-induced TLR3 induction, indicating that type I IFN, IFN-alpha/beta, is critical for MV-mediated TLR3 induction. Yet, a recently identified virus-inducible IFN, the IFN-lambda, did not contribute to TLR3 expression. A virus-responsive element that up-regulates TLR3 was identified in the TLR3-promoter region by reporter gene experiments. The ISRE, a recently reported site for IFN-beta induction, but not STAT binding site, located around -30bp of TLR3 promoter responded to MV to induce TLR3 expression. This further indicates the importance of type I IFN for TLR3 up-regulation in the case of viral infection. In HeLa and MRC5 cells, augmented production of IFN-beta was observed in response to dsRNA when TLR3 had been induced beforehand. Thus, the MV-induced expression of TLR3 may reflect amplified IFN production that plays a part in host defense to viral infection. 相似文献