首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Kuo TC  Odom OW  Herrin DL 《The FEBS journal》2006,273(12):2631-2644
Group I intron ribozymes require cations for folding and catalysis, and the current literature indicates that a number of cations can promote folding, but only Mg2+ and Mn2+ support both processes. However, some group I introns are active only with Mg2+, e.g. three of the five group I introns in Chlamydomonas reinhardtii. We have investigated one of these ribozymes, an intron from the 23S LSU rRNA gene of Chlamydomonas reinhardtii (Cr.LSU), by determining if the inhibition by Mn2+ involves catalysis, folding, or both. Kinetic analysis of guanosine-dependent cleavage by a Cr.LSU ribozyme, 23S.5 Delta Gb, that lacks the 3' exon and intron-terminal G shows that Mn2+ does not affect guanosine binding or catalysis, but instead promotes misfolding of the ribozyme. Surprisingly, ribozyme misfolding induced by Mn2+ is highly cooperative, with a Hill coefficient larger than that of native folding induced by Mg2+. At lower Mn2+ concentrations, metal inhibition is largely alleviated by the guanosine cosubstrate (GMP). The concentration dependence of guanosine cosubstrate-induced folding suggests that it functions by interacting with the G binding site, perhaps by displacing an inhibitory Mn2+. Because of these and other properties of Cr.LSU, the tertiary structure of the intron from 23S.5 Delta Gb was examined using Fe2+-EDTA cleavage. The ground-state structure shows evidence of an unusually open ribozyme core: the catalytic P3-P7 domain and the nucleotides that connect it to the P4-P5-P6 domain are exposed to solvent. The implications of this structure for the in vitro and in vivo properties of this intron ribozyme are discussed.  相似文献   

4.
We previously reported the identification of an intron (CaLSU) in the 25S ribosomal RNA of some Candida albicans yeast strains. CaLSU was shown to self-splice and has the potential to adopt a secondary structure typical of group I introns. The presence of CaLSU inC. albicans strains correlates with a high degree of susceptibility to base analog antifungal agents, 5-fluorocytosine (5-FC) or 5-fluorouracil (5-FU). Cell death, resulting from addition of base analogs to growing cultures, precluded demonstration of a causal relationship between CaLSU presence and susceptibility to base analogs. In the present study, CaLSU was inserted in a non-essential lacZ reporter gene and expression was examined in Saccharomyces cerevisiae. Different mutations affecting in vitro self-splicing also had similar effects on reporter gene expression in vivo. This indicates that in vivo removal of CaLSU from the reporter gene occurs through the typical self-splicing mechanism of group I introns. Base analogs inhibited expression of the reporter gene product in a concentration-dependent manner upon their addition to the cultures. This supports a model in which disruption of intron secondary structure, consecutive to the incorporation of nucleotide analogs, is a major factor determining the susceptibility of C.albicans cells to base analogs.  相似文献   

5.
Bidirectional effectors of a group I intron ribozyme.   总被引:4,自引:1,他引:3       下载免费PDF全文
The group I self-splicing introns found in many organisms are competitively inhibited by L-arginine. We have found that L-arginine acts stereoselectively on the Pc1. LSU nuclear group I intron of Pneumocystis carinii, competitively inhibiting the first (cleavage) step of the splicing reaction and stimulating the second (ligation) step. Stimulation of the second step is most clearly demonstrated in reactions whose first step is blocked after 15 min by addition of pentamidine. The guanidine moiety of arginine is required for both effects. L-Canavanine is a more potent inhibitor than L-arginine yet it fails to stimulate. L-Arginine derivatized on its carboxyl group as an amide, ester or peptide is more potent than L-arginine as a stimulator and inhibitor, with di-arginine amide and tri-arginine being the most potent effectors tested. The most potent peptides tested are 10,000 times as effective as L-arginine in inhibiting ribozyme activity, and nearly 400 times as effective as stimulators. Arginine and some of its derivatives apparently bind to site(s) on the ribozyme to alter its conformation to one more active in the second step of splicing while competing with guanosine substrate in the first step. This phenomenon indicates that ribozymes, like protein enzymes, can be inhibited or stimulated by non-substrate low molecular weight compounds, which suggests that such compounds may be developed as pharmacological agents acting on RNA targets.  相似文献   

6.
Zarrinkar PP  Sullenger BA 《Biochemistry》1999,38(11):3426-3432
Group I ribozymes can repair mutant RNAs via trans-splicing. Unfortunately, substrate specificity is quite low for the trans-splicing reaction catalyzed by the group I ribozyme from Tetrahymenathermophila. We have used a systematic approach based on biochemical knowledge of the function of the Tetrahymena ribozyme to optimize its ability to discriminate against nonspecific substrates in vitro. Ribozyme derivatives that combine a mutation which indirectly slows down the rate of the chemical cleavage step by weakening guanosine binding with additional mutations that weaken substrate binding have greatly enhanced specificity with short oligonucleotide substrates and an mRNA fragment derived from the p53 gene. Moreover, compared to the wild-type ribozyme, reaction of a more specific ribozyme with targeted substrates is much less sensitive to the presence of nonspecific RNA competitors. These results demonstrate how a detailed understanding of the biochemistry of a catalytic RNA can facilitate the design of customized ribozymes with improved properties for therapeutic applications.  相似文献   

7.
Disney MD  Haidaris CG  Turner DH 《Biochemistry》2001,40(21):6507-6519
A group I intron precursor and ribozyme were cloned from the large subunit rRNA of the human pathogen Candida albicans. Both the precursor and ribozyme are functional as determined from in vitro assays. Comparisons of dissociation constants for oligonucleotide binding to the ribozyme and to a hexanucleotide mimic of its internal guide sequence lead to a model for recognition of the 5' exon substrate by this intron. In particular, tertiary contacts with the P1 helix that help align the splice site include three 2'-hydroxyl groups, a G.U pair that occurs at the intron's splice junction, and a G.A pair. The free energy contribution that each interaction contributes to tertiary binding is determined. When the G.A pair is replaced with a G-C pair, tertiary interactions to 5' exon mimic 2'-hydroxyl groups are significantly weakened. When the G.A pair is replaced with a G.U pair, tertiary interactions are retained and binding is 10-fold tighter. These results expand our knowledge of substrate recognition by group I introns, and also provide a basis for rational design of oligonucleotide-based therapeutics for targeting group I introns by binding enhancement by tertiary interactions and suicide inhibition strategies.  相似文献   

8.
9.
Abstract A gene encoding a type I topoisomerase (TOP1) was isolated from Candida albicans , sequenced, and expressed in Saccharomyces cerevisiae . The TOP1 gene was identified from a C. albicans genomic library by hybridization with the product of a polymerase chain reaction with degenerate primer sets encoding regions conserved in other TOP1 genes. A clone containing an open reading frame of 2463 bp and predicted to encode a protein of 778 amino acids with sequence similarity to eukaryotic type I topoisomerases was identified. The C. albicans TOP1 gene restored camptothecin sensitivity and increased the topoisomerase activity in S. cerevisiae , indicating that the DNA fragment encodes a functional C. albicans topoisomerase I.  相似文献   

10.
The peripheral P2.1 domain of the Tetrahymena group I intron ribozyme has been shown to be non-essential for splicing. We found, however, that separately prepared P2.1 RNA efficiently accelerates the 3' splice-site-specific hydrolysis reaction of a mutant ribozyme lacking both P2.1 and its upstream region in trans. We report here the unusual properties of this trans-activation. Compensatory mutational analysis revealed that non-native long-range base-pairings between the loop region of P2.1 RNA and L5c region of the mutant ribozyme are needed for the activation in spite of the fact that P2.1 forms base-pairings with P9.1 in the Tetrahymena ribozyme. The trans -activation depends on the non-native RNA-RNA interaction together with the higher order structure of P2.1 RNA. This activation is unique among the known trans-activations that utilize native tertiary interactions or RNA chaperons.  相似文献   

11.
AIMS: To determine the frequency, distribution and association of genotypes of Candida albicans and C. dubliniensis in invasive and noninvasive clinical isolates. METHODS: Twenty-one invasive and 18 noninvasive isolates were examined by PCR amplification of a transposable intron region in the 25S rRNA gene. Isolates were genotyped following analysis of the size of resulting DNA amplicons. The isolates could be subdivided into four genotypes (A-D). RESULTS: There was no significant difference between the frequency and genotype distribution of the invasive and noninvasive Candida isolates. IMPACT OF THE STUDY: Therapeutic prophylaxis against candidal infections remains an area of controversy. Any diagnostic markers that reflect the potential of isolates to become invasive should be fully explored, so that more focused antifungal intervention should be targeted at these patients with these potential invasive markers. This study demonstrated that analysis of the transposable intron region in the 25S rRNA gene may be useful in helping to differentiate C. albicans from C. dubliniensis isolates, without the need for sequence analysis, which may not be readily available at primary diagnostic laboratories. However, employment of this genotypic assay is not a suitable locus to determine invasiveness and other more reliable markers of invasiveness should be sought.  相似文献   

12.
13.
14.
15.
Swisher J  Duarte CM  Su LJ  Pyle AM 《The EMBO journal》2001,20(8):2051-2061
Group II introns are well recognized for their remarkable catalytic capabilities, but little is known about their three-dimensional structures. In order to obtain a global view of an active enzyme, hydroxyl radical cleavage was used to define the solvent accessibility along the backbone of a ribozyme derived from group II intron ai5gamma. These studies show that a highly homogeneous ribozyme population folds into a catalytically compact structure with an extensively internalized catalytic core. In parallel, a model of the intron core was built based on known tertiary contacts. Although constructed independently of the footprinting data, the model implicates the same elements for involvement in the catalytic core of the intron.  相似文献   

16.
Modular engineering of a Group I intron ribozyme   总被引:3,自引:0,他引:3  
All Group I intron ribozymes contain a conserved core region consisting of two helical domains, P4–P6 and P3–P7. Recent studies have demonstrated that the elements required for catalysis are concentrated in the P3–P7 domain. We carried out in vitro selection experiments by using three newly constructed libraries on a variant of the T4 td Group I ribozyme containing only a P3–P7 domain in its core. Selected variants with new peripheral elements at L7.1, L8 or L9 after nine cycles efficiently catalyzed the reversal reaction of the first step of self-splicing. The variants from this selection contained a short sequence complementary to the substrate RNA without exception. The most active variant, which was 3-fold more active than the parental wild-type ribozyme, was developed from the second selection by employing a clone from the first selection. The results show that the P3–P7 domain can stand as an independent catalytic module to which a variety of new domains for enhancing the activity of the ribozyme can be added.  相似文献   

17.
The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved.  相似文献   

18.
Candida albicans is one of many infectious pathogens that are evolving resistance to current treatments. RNAs provide a large class of targets for new therapeutics for fighting these organisms. One strategy for targeting RNAs uses short oligonucleotides that exhibit binding enhancement by tertiary interactions in addition to Watson-Crick pairing. A potential RNA target in C. albicans is the self-splicing group I intron in the LSU rRNA precursor. The recognition elements that align the 5' exon splice site for a ribozyme derived from this precursor are complex [Disney, M. D., Haidaris, C. G., and Turner, D. H. (2001) Biochemistry 40, 6507-6519]. These recognition elements have been used to guide design of hexanucleotide mimics of the 5' exon that have backbones modified for nuclease stability. These hexanucleotides bind as much as 100000-fold more tightly to a ribozyme derived from the intron than to a hexanucleotide mimic of the intron's internal guide sequence, r(GGAGGC). Several of these oligonucleotides inhibit precursor self-splicing via a suicide inhibition mechanism. The most promising suicide inhibitor is the ribophosphoramidate rn(GCCUC)rU, which forms more trans-spliced than cis-spliced product at oligonucleotide concentrations of >100 nM at 1 mM Mg(2+). The results indicate that short oligonucleotides modified for nuclease stability can target catalytic RNAs when the elements of tertiary interactions are complex.  相似文献   

19.
Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg(2+) and K(+) ions. Five of the metals bind within 12 A of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号