首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fractionation of human blood plasma low density lipoproteins (LDL) was performed by ion-exchange chromatography, using a linear NaCl gradient. It was shown that the binding of LDL subfractions eluted with a low ionic strength buffer (i.e., containing the particles with a lower negative charge) to B, E-receptors of fibroblasts was more effective than that of subfractions eluted with a high ionic strength buffer (i.e., containing the particles with a higher negative charge). The LDL particles with a lower negative charge had lower values of flotation coefficients (according to analytical ultracentrifugation data), smaller dimensions (according to gradient gel electrophoresis data) and a lower phospholipid/protein ratio (w/w). The experimental results suggest that LDL subfractions having different electrical parameters of the particle surface also differ in other physicochemical properties and seem to play a different role in atherogenesis.  相似文献   

2.
Particle diameters of very low density lipoprotein (VLDL)--29.5, 36.3, 22.0; low density lipoprotein (LDL)--18.4, 19.0, 22.0; high density lipoprotein subclass 2 (HDL2)--8.5, 9.7, 15.0; and high density lipoprotein subclass 3 (HDL3)--7.2, 7.6, 14.4 nm were evaluated by means of flotation velocity (FV), optical mixing (OM), and fluorescent probe (FP) respectively. On the basis of the calculated frictional ratio f/f0 from FV and OM data for VLDL, LDL, HDL2, and HDL3--1.51, 1.07, 1.31, and 1.10, assuming the sphericity lipoprotein particles as an index for structural peculiarity a conclusion is made that in contrast to LDL and HDL3 HDL2 have asymmetrical weight distribution per particle volume. A model is suggested suitable for the structural peculiarity of VLDL established on the data of three independent methods which outlines VLDL as particles consisting of several associated subunits with the mean diameter of about 20 nm.  相似文献   

3.
The methods of measuring the ultrasound velocity and density were used for study the adiabatic compressibility of low density lipoproteins (LDL) during their oxidation. We showed, that copper-mediated oxidation of LDL resulted in a decrease of apparent specific compressibility, phi(k)/beta0, of lipoproteins. The changes of ultrasound velocity and phi(k)/beta0 value started much earlier than the beginning of propagation phase corresponding to the fast increase in concentration of conjugated dienes, measured by absorption at 230 nm. It was assumed that the changes of compressibility could be in particularly due to increase in ordering of the phospholipids during reductive activation of Cu2+.  相似文献   

4.
Cryo-electron microscopy was used to analyze the structure of lipoprotein particles in density gradient subfractions of human very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL). Lipoproteins from a normolipidemic subject with relatively large and buoyant LDL (pattern A) and from a subject with a predominance of small dense LDL (pattern B) were compared. Projections of VLDL in vitreous ice were heterogeneous in size, but all were circular with a relatively even distribution of contrast. Selected projections of LDL, on the other hand, were circular with a high density ring or rectangular with two high density bands. Both circular and rectangular LDL projections decreased in average size with increasing subfraction density, but were found in all of 10 density gradient subfractions, both in pattern A and in pattern B profiles. Preparations of total IDL contained particles with the structural features of VLDL as well as particles resembling LDL. IDL particles resembling LDL were observed in specific density gradient subfractions in the denser region of the VLDL;-IDL density range. Within the group of IDL particles resembling LDL considerable heterogeneity was observed, but no structural features specific for the pattern A or pattern B lipoprotein profile were recognized.The observed structural heterogeneity of the apolipoprotein B-containing serum lipoproteins may reflect differences in the composition of these particles that may also influence their metabolic and pathologic properties.  相似文献   

5.
Lipoprotein lipase (LPL) and hepatic lipase (HL) are enzymatic activities involved in lipoprotein metabolism. The purpose of this study was to analyze the physicochemical modifications of plasma lipoproteins produced by LPL activation in two patients with apoC-II deficiency syndrome and by HL activation in two patients with LPL deficiency. LPL activation was achieved by the infusion of normal plasma containing apoC-II and HL was released by the injection of heparin. Lipoproteins were analyzed by ultracentrifugation in a zonal rotor under rate flotation conditions before and after lipase activation. The LPL activation resulted in: a reduction of plasma triglycerides; a reduction of fast-floating very low density lipoprotein (VLDL) concentration; an increase of intermediate density lipoprotein (IDL), which maintained unaltered flotation properties; an increase of low density lipoproteins (LDL) accompanied by modifications of their flotation rates and composition; no significant variations of high density lipoprotein (HDL) levels; and an increase of the HDL flotation rate. The HL activation resulted in: a slight reduction of plasma triglycerides; a reduction of the relative triglyceride content of slow-floating VLDL, IDL, LDL2, and HDL3 accompanied by an increase of phospholipid in VLDL and by an increase of cholesteryl ester in IDL; and a reduction of the HDL flotation rate. These experiments in chylomicronemic patients provide in vivo evidence that LPL and HL are responsible for plasma triglyceride hydrolysis of different lipoproteins, and that LPL is particularly involved in determining the levels and physicochemical properties of LDL. Moreover, in these patients, the LPL activation does not directly change the HDL levels, and LPL or HL does not produce a step-wise conversion of HDL3 to HDL2 (or vice versa) but rather modifies the flotation rates of all the HDL molecules present in plasma.  相似文献   

6.
During atherogenesis, low density lipoprotein (LDL) particles in the arterial intima become modified and fuse to form extracellular lipid droplets. Proteolytic modification of apolipoprotein (apo) B-100 may be one mechanism of droplet formation from LDL. Here we studied whether the newly described acid protease cathepsin F can generate LDL-derived lipid droplets in vitro. Treatment of LDL particles with human recombinant cathepsin F led to extensive degradation of apoB-100, which, as determined by rate zonal flotation, electron microscopy, and NMR spectroscopy, triggered both aggregation and fusion of the LDL particles. Two other acid cysteine proteases, cathepsins S and K, which have been shown to be present in the arterial intima, were also capable of degrading apoB-100, albeit less efficiently. Cathepsin F treatment resulted also in enhanced retention of LDL to human arterial proteoglycans in vitro. Cultured monocyte-derived macrophages were found to secrete active cathepsin F. In addition, similarly with cathepsins S and K, cathepsin F was found to be localized mainly within the macrophage-rich areas of the human coronary atherosclerotic plaques. These results suggest that proteolytic modification of LDL by cathepsin F may be one mechanism leading to the extracellular accumulation of LDL-derived lipid droplets within the proteoglycan-rich extracellular matrix of the arterial intima during atherogenesis.  相似文献   

7.
The neutral carbohydrate content of both the protein (apoB) and lipid fractions of low density lipoproteins (LDL) from subjects with a predominance of small, dense LDL (subclass pattern B) was found to be lower than in subjects with larger LDL (subclass pattern A): 45 +/- 12 versus 64 +/- 13 mg/g apoLDL, and 58 +/- 8 versus 71 +/- 8 mg/g apoLDL (P less than 0.0005 for both). Sialic acid content of LDL lipids, but not apoB, was also reduced in subclass pattern B. ApoB and glycolipid carbohydrate content of total LDL and LDL density subfractions declined with increasing LDL density and decreasing particle diameter. Moreover, in LDL subfractions from pattern B subjects, carbohydrate content of LDL apoB, but not LDL glycolipid, was significantly lower in comparison with particles of similar size from pattern A subjects. Thus, in LDL subclass pattern B, reductions in LDL carbohydrate content are associated both with reduced concentrations of larger carbohydrate-enriched LDL subclasses, and with reduced glycosylation of apoB in all LDL particles. LDL glycolipids may vary with overall lipid content of LDL particles, but variation in apoB glycosylation may indicate differences in pathways for LDL production, and reduced apoB glycosylation may reflect the altered metabolic state responsible for LDL subclass pattern B.  相似文献   

8.
Apolipoprotein B metabolism in homozygous familial hypercholesterolemia   总被引:5,自引:0,他引:5  
This report describes the metabolism of apolipoprotein B-containing lipoproteins in seven familial hypercholesterolemic (FH) homozygotes and compares the results to the values obtained from five healthy control subjects. The concentration, composition, and metabolism of large, triglyceride-rich very low density lipoproteins (VLDL1, Sf 60-400) were the same in the control and FH groups, indicating that this component of the VLDL delipidation cascade ws unaffected by the absence of receptors. In contrast, familial hypercholesterolemic small VLDL2 (Sf 20-60) was enriched with cholesterol and depleted in triglyceride. Moreover, its plasma concentration was elevated as a result of an increase in its synthesis and a defect in the removal of a remnant population within this density interval. The latter accounted for up to 50% of the total mass of the fraction. Onward transfer of apolipoprotein B (apoB) from small VLDL through intermediate density lipoprotein (IDL) to low density lipoprotein (LDL) was retarded, suggesting that receptors were involved in this supposedly lipase-mediated event. IDL and LDL concentrations increased up to fourfold above normal in the plasma of the FH patients due partly to the delay in maturation and partly to defective direct catabolism. We conclude that the LDL receptor plays multiple and important roles in the metabolism and transformation of apoB-containing particles in the Sf 0-400 flotation interval.  相似文献   

9.
Oral nicotine impairs clearance of plasma low density lipoproteins   总被引:1,自引:0,他引:1  
The effect of chronic oral nicotine intake on plasma low density lipoprotein (LDL) clearance, lipid transfer protein, and lecithin:cholesterol acyltransferase (LCAT) was examined in male atherosclerosis susceptible squirrel monkeys. Eighteen yearling primates were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine monkeys given liquid diet supplemented with nicotine at 6 mg/kg body wt/day for a two-year period. Averaged over 24 months of treatment, animals in the Nicotine group had significantly higher levels of plasma and LDL cholesterol compared to Controls while plasma LCAT activity was similar for both groups. Following simultaneous injection of 3H LDL and 14C high density lipoprotein (HDL) cholesteryl ester (CE), removal of the latter was not altered by oral nicotine while plasma clearance of 3H LDL was dramatically delayed in Nicotine monkeys. Transfer of 14C HDL CE to very low density lipoprotein (VLDL)-LDL particles was greatly accelerated in the Nicotine group vs Controls while the reciprocal movement of 3H LDL CE to HDL was only higher in experimental animals at two time points following injection of the isotopes. Results from this study provide evidence that one major detrimental effect of long-term oral nicotine use is an increase in the circulating pool of atherogenic LDL which is due to: 1) accelerated transfer of lipid from HDL; and 2) impaired clearance of LDL from the plasma compartment. Diminished removal of LDL is of particular importance because an extended residence time of these particles in circulation would increase the likelihood of their deposition in the arterial wall.  相似文献   

10.
Little is known about the mechanism and control of lipoprotein particle fusion, although apoproteins are presumed to be important in maintenance of particle structure. This study characterizes the interaction of apo-B-containing low density lipoproteins (LDL) with cholesterol ester microemulsions (CEME) in the presence and absence of apo-A-I to determine if a role for these apoproteins in particle integrity could be ascertained. CEME are an apoprotein-free analog of LDL formed by sonication of radiolabeled phospholipid (surface) and cholesterol ester (core). Incubation of CEME with LDL followed by precipitation of LDL with MnCl2 resulted in coprecipitation of CEME with LDL that was time-, temperature-, and concentration-, but not pH (pH 6-9)-, dependent and occurred over a wide range of CEME and LDL particle compositions. Particles from the incubation were larger than the unincubated particles and intermediate in density and electrophoretic mobility between the starting LDL and CEME. Differential scanning calorimetry experiments suggested that CEME surface and core lipids had mixed with those of LDL. When particles from incubations were exposed to an anti-apo-B column, radiolabeled surface and core molecules originating from the CEME particles bound to the column. Particles eluted at low pH from the anti-apo-B column were irregularly shaped and had excess surface material as judged by electron microscopy. Incubation of CEME with LDL in the presence of 3 M KBr or 4% bovine serum albumin did not alter the interaction of the particles. However, incubation of CEME with LDL in the presence of apo-A-I (2:1 CEME cholesterol-to-apo-A-I mass ratio) greatly reduced the interaction of the LDL and CEME particles. We conclude that the incubation of CEME with isolated LDL resulted in particle fusion that was prevented by apo-A-I.  相似文献   

11.
Large triglyceride-rich very low density lipoproteins (VLDL) Sf 60-400 from hypertriglyceridemic (HTG) patients, but not VLDL from normal subjects, bind to the LDL receptor of human skin fibroblasts because they contain apolipoprotein E (apoE) of the correct conformation, accessible both to the LDL receptor and to specific proteolysis by alpha-thrombin. Trypsin treatment of HTG-VLDL Sf 60-400 causes extensive apoB hydrolysis (fragments less than 100,000 mol wt), total degradation of apoE, and thus complete loss of LDL receptor binding. The reincorporation of apoE (1 mol/mol VLDL) into trypsin-treated HTG-VLDL completely restored the ability of HTG-VLDL to interact with the LDL receptor, suggesting that apoE probably does not induce a conformational change in apoB which results in receptor recognition, nor is intact apoB necessary to maintain the appropriate conformation of apoE for LDL receptor binding. As a model of large triglyceride-rich VLDL Sf greater than 60, we fractionated Intralipid by the Lindgren method of cumulative flotation and prepared apoE-Intralipid complexes. Competitive binding studies demonstrated that apoE-Intralipid is at least as effective as LDL for uptake and degradation of 125I-labeled LDL. Control Intralipid complexes containing apoA-I instead of apoE do not compete with iodinated LDL. Since these TG-rich complexes contain no apoB, apoB is, therefore, not only not sufficient for receptor-mediated uptake of large particles, it is not necessary. ApoE of the correct conformation is not only necessary but is sufficient to mediate receptor binding of large triglyceride-rich particles to the LDL receptor.  相似文献   

12.
The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [3H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [3H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [3H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles.  相似文献   

13.
The kinetics of endogenously labeled low density lipoprotein (LDL) triglycerides (TG) and apoprotein B (apoB) have been studied in four normal and in four hyperlipemic subjects using double tracers. Analysis of the data suggests that most LDL triglycerides turn over about 10 times faster than apoB (0.003/min vs. 0.0003/min) and that about 10% of the LDL particles contain most of the TG found with LDL. It is not possible to determine from the analysis whether each new LDL particle arrives with the excess TG or whether only a subpopulation of particles contains most of the TG. The kinetic analysis further suggests that triglyceride-rich LDL particles do not exchange with an extraplasma compartment as most LDL particles do, and thus, they behave more like very low density lipoprotein particles. A compartmental model accounting for both the LDL-TG and LDL-apoB kinetics is proposed.  相似文献   

14.
Complexes of Salmonella typhimurium lipopolysaccharide toxin (LPS) with low density lipoproteins (LDL) prepared in vitro have been analyzed. LPS-LDL complexes were found to comprise approx. 0.24 mg LPS/mg LDL protein. The major protein of complexes was apolipoprotein apoB-100 (greater than or equal to 90-95%). Incorporation of LPS molecules into LDL was accompanied by small changes in lipid composition, i.e. the phosphatidylcholine content was diminished by approx. 11% and the free fatty acid concentration was raised 2-fold. Analytical ultracentrifugation showed that insertion of LPS into LDL results in the increase of a portion of particles with higher density (lower flotation coefficient) compared to initial LDL. As was evidenced by ESR, in LPS-LDL complexes, the phospholipid hydrocarbon chains are more ordered than in LDL. 31P-NMR spectra indicated that in LPS-LDL complexes the mobility of phospholipid polar headgroups is restricted in comparison with LDL. Application of the shift reagent (Pr3+) revealed that phospholipid molecules form a monolayer structure on the surface of complexes. Upon binding of LPS to LDL, a maximum of the apoB intrinsic fluorescence was slightly red-shifted (1-2 nm) which may testify that the localization of apoB remains nearly unchanged. For LPS-LDL complexes, the accessibility of apoB fluorophores to quenchers (I-, Cs+, acrylamide) did not dramatically differ from that of LDL. It is concluded that rather large amounts of LPS (about 9-10 molecules) can accommodate in one LDL particle without severely perturbing its original composition and structure. Moreover, in the LPS-LDL complexes, oligosaccharide chains of LPS screen notably neither phospholipid polar headgroups nor, what is very important, apoB. LPS-LDL complexes are suggested to be able in vivo to bind to cellular apoB/E receptors, possible LPS receptors and scavenger-receptors of macrophages (monocytes).  相似文献   

15.
Concentrations in serum were determined for 18 fatty acids (FAs) and 21 lipoprotein main and subclasses by chromatographic analyses and the average size was calculated for very low density (VLDL), low density (LDL) and high density (HDL) particles. 283 ethnic Norwegian children and adults from the rural Fjord region of Western Norway were compared with the objectives to reveal patterns and gender differences during the development from prepuberty to adulthood and during aging in adults. Both genders showed a large increase in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from child to adult. Males, but not females, show a significant increase in most C16–C18 FAs from prepuberty to adulthood. These changes in males correlate to a pattern of increased concentrations of triglycerides, VLDL and LDL particles, especially the atherogenic subclasses of small and very small LDL particles. Furthermore, concentrations of medium, large and very large HDL particles decrease, while concentration of very small HDL particles increase leading to reduced average size of HDL particles. Females only showed significant increase in concentrations of small and very small LDL particles, very small HDL particles and apolipoprotein B. While EPA and DHA continued to increase during aging in women, no validated model for connecting age to FA profile was obtained for men. Women showed significant increase in concentrations of all subclasses of LDL particles during aging, while men exhibited a more complex pattern with increase also in apolipoprotein A1 and HDL particles.  相似文献   

16.
The purpose of this study was to determine the effects of a fish oil concentrate (FOC) on the in vitro conversion of very low density lipoproteins (VLDL) to intermediate (IDL) and low density lipoproteins (LDL). Six hypertriglyceridemic patients were randomly allocated to receive either placebo (olive oil) or FOC (1 g/14 kg body weight/day) for 4 weeks in a crossover study with a 4-week washout period. The FOC provided 3 g of eicosapentaenoic + docosahexaenoic acid per 70 kg of body weight, and it lowered plasma triglyceride and VLDL cholesterol levels by 35% and 42%, respectively. Decreases in the largest particles (VLDL(1)) were primarily responsible, with no effect noted in smaller VLDL particles (VLDL(2) and VLDL(3)). The FOC increased LDL cholesterol levels by 25% (P < 0.06) but did not affect LDL particle size. VLDL(1) and VLDL(3) were incubated in vitro with human postheparin lipases. Although triglycerides from both types of VLDL were hydrolyzed to the same extent with both treatments, particles isolated during the FOC phase were more readily converted into IDL and LDL than were control particles. These data suggest that the marine omega3 fatty acids may enhance the propensity of VLDL to be converted to LDL, partly explaining the decreased VLDL and increased LDL levels in FOC-treated patients.  相似文献   

17.
When low density lipoprotein (LDL) is incubated with granules isolated from rat serosal mast cells, a fraction of LDL is bound to the granule heparin proteoglycan. If incubation is continued at 37 degrees C, the bound LDL, but not the unbound LDL, is degraded by granule neutral proteases. In the early stage of incubation, all the granule-bound LDL can be released by 0.3 M NaCl (the "salt-sensitive" fraction of LDL). With time, an increasing proportion of the granule-bound LDL requires 0.5 M NaCl for release (the "salt-resistant" fraction of LDL). Chemical analysis showed that, on average, 20% of the apolipoprotein B LDL was lost from the salt-sensitive fraction and 60% from the salt-resistant fraction, without any change in the composition of the lipid portion. Electron microscopic analysis disclosed large fused particles of LDL (diameters up to 100 nm) in the highly proteolyzed salt-resistant fraction, but no fused particles could be found in the less proteolyzed salt-sensitive fraction. We conclude that both binding and extensive degradation of LDL by mast cell granules is required for fusion of LDL particles on the granule surface. As compared with native LDL, the mast cell granule-modified LDL particles exhibit (i) increased particle size, (ii) selective loss of protein (apoB), (iii) a decrease in hydrated density, and (iv) stronger ionic interaction between apoB and heparin proteoglycan. The particles resemble the extracellular lipid droplets found in atherosclerotic lesions of both man and animals. Modification of LDL by mast cells may therefore provide a model of how these lipid structures are formed.  相似文献   

18.
19.
20.
The fractionation and physicochemical characterization of the complex molecular components composing the plasma lipoprotein spectrum in the goose, a potential model of liver steatosis, are described. Twenty lipoprotein subfractions (d less than 1.222 g/ml) were separated by isopycnic density gradient ultracentrifugation, and characterized according to their chemical composition, particle size and particle heterogeneity, electrophoretic mobility, and apolipoprotein content. Analytical ultracentrifugal analyses showed high density lipoproteins (HDL) to predominate (approximately 450 mg/dl plasma), the peak of its distribution occurring at d approximately 1.090 g/ml (F1.21 approximately 2.5). The HDL class displayed marked density heterogeneity, HDL1-like particles being detected up to a lower density limit of approximately 1.020 g/ml, particle size decreasing progressively from 17-19 nm at d 1.024-1.028 g/ml to 10.5-12 nm (d 1.055-1.065 g/ml), and then remaining constant (approximately 9 nm) at densities greater than 1.065 g/ml. HDL subfractions displayed multiple size species; five subspecies were present over the range d 1.103-1.183 g/ml with diameters of 10.5, 9.9, 9.0, 8.2, and 7.5 nm, four in the range d 1.090-1.103 g/ml (diameters 10.5, 9.9, 9.0, and 8.2 nm) and three over the range d 1.076-1.090 g/ml (diameters 10.5, 9.9, and 9.0 nm). ApoA-I (Mr 25,000-27,000) was the major apolipoprotein in all goose HDL subfractions, while the minor components (apparent Mr 100,000, 91,000, 64,000, 58,000, approximately 42,000, 18,000 and apoC-like proteins) showed marked quantitative and qualitative variation across this density range (i.e., 1.055-1.165 g/ml). The d 1.063 g/ml boundary for separation of goose low density lipoproteins (LDL) from HDL was inappropriate, since HDL-like particles were present in the density interval 1.024-1.063 g/ml, while particles enriched in apoB (Mr approximately 540,000) and resembling LDL in size (approximately 20.5 nm) were detected up to a density of approximately 1.076 g/ml. Goose LDL itself was a major component of the profile (90-172 mg/dl) with a single peak of high flotation rate (Sf approximately 10.5). The physicochemical properties and apolipoprotein content of intermediate density lipoproteins (IDL) and LDL varied but little over the range d 1.013-1.040 g/ml, presenting as two particle species (diameters 20.5 and 21 nm) of essentially constant chemical composition; LDL (d 1.019-1.040 g/ml) were separated from HDL1 by gel filtration chromatography and appeared to contain primarily apoB with lesser amounts of apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号