首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vestibular nerves of squirrel monkeys (Saimiri sciureus) embedded in plastics and epoxies were examined with light microscopy (LM) and transmission electron microscopy (TEM), and computerized measures were obtained and analyzed statistically. An average of 12,412 perikarya and 12,005 myelinated nerve fibers was obtained. Approximately 0.7% of the perikarya appeared unmyelinated under LM. About 500 unmyelinated fibers were counted. The cross-sectional area of 1,864 perikarya was 200-650 micron 2. The cross-sectional area of 1,346 nerve fibers was 3-11 micron 2 for the axoplasm and 11-12 micron 2 for the myelin sheath of the same fiber. Myelin thickness was directly proportional to the axoplasm cross-sectional area of the nerve fibers. The cross-sectional area of central axons and peripheral dendrites differed significantly (p less than 0.001). The initial segments of peripheral dendrites were usually smaller, but longer than the initial segments of the central axons. Both initial segments increased in diameter after the first node of Ranvier. Schmidt-Lantermann incisures were more abundant in thick and heavily myelinated fibers than in thin and lightly myelinated fibers. Larger perikarya usually had larger fibers and vice versa, within the first 100-200 micron from the first node of Ranvier. No major ultrastructural differences were found between myelinated and unmyelinated perikarya, except at the hillock region. The Nissl substance was preferentially located in the peripheral cytoplasm.  相似文献   

2.
In an isolated preparation of the Rana temporaria urinary bladder after a simultaneous morphological and physiological investigation a, structural-functional differentiation of free bushy receptors has been demonstrated. According to arborization character and to the appearance of deferent fibers, the receptors are divided into two types. The first type receptors have a simple structure, a long deferent poorly branching myelin fiber, terminating in a diffuse bush near blood vessels. The second type receptors are of a more complex structure. Their myelin fibers, when leaving the fasciculus, are 4-8 times shorter than the first type receptors, undergo dichotomic and trichotomic divisions several times, and in their distal part they form two initial myelin segments. Their receptory apparatus has a tree-like bush-shaped form and consists of several compact bushes. The impulse activity of the receptors is also characterized by two types of action potentials, differing in their amplitude. When responding to a mechanical stimulation, the high voltage impulse frequency changes, when sodium chloride concentration is increased, the low voltage impulse frequency changes. There is a certain localization of the zones in the preparation from which it is possible to obtain predominantly either low voltage or high voltage responses. The response to the low voltage reaction proves to be obtained from the first type receptors, and that to the high voltage reaction--from the second type receptors. Thus, in the frog, that is on a low phylogenetic stage, differentiation of the free bushy sensitive terminal into mechano- and chemoreceptors is already outlined.  相似文献   

3.
Electric organs in Sternarchidae are of neural origin, in contrast to electric organs in other fish, which are derived from muscle. The electric organ in Sternarchus is composed of modified axons of spinal neurons. Fibers comprising the electric organ were studied by dissection and by light- and electron microscopy of sectioned material. The spinal electrocytes descend to the electric organ where they run anteriorly for several segments, turn sharply, and run posteriorly to end blindly at approximately the level where they enter the organ. At the level of entry into the organ, and where they turn around, the axons are about 20 µ in diameter; the nodes of Ranvier have a typical appearance with a gap of approximately 1 µ in the myelin. Anteriorly and posteriorly running parts of the fibers dilate to a diameter of approximately 100 µ, and then taper again. In proximal and central regions of anteriorly and posteriorly running parts, nodal gaps measure approximately 1 µ along the axon. In distal regions of anteriorly and posteriorly running parts are three to five large nodes with gaps measuring more than 50 µ along the fiber axis. Nodes with narrow and with wide gaps are distinguishable ultrastructurally; the first type has a typical structure, whereas the second type represents a new nodal morphology. At the typical nodes a dense cytoplasmic material is associated with the axon membrane. At large nodes, the unmyelinated axon membrane is elaborated to form a closely packed layer of irregular polypoid processes without a dense cytoplasmic undercoating. Electrophysiological data indicate that typical nodes in proximal regions of anteriorly and posteriorly running segments actively generate spikes, whereas large distal nodes are inactive and act as a series capacity. Increased membrane surface area provides a morphological correlate for this capacity. This electric organ comprises a unique neural system in which axons have evolved so as to generate external signals, an adaptation involving a functionally significant structural differentiation of nodes of Ranvier along single nerve fibers.  相似文献   

4.
Variations in the structure of Ranvier nodes and of the paranodal region of frog nerve fibers were examined in an intravital light-optical investigation. Several morphological characteristics of the degree of disturbance of the structures of the paranodal zone (myelin cones and bulbs of the node) are compared. Morphological characteristics for the same isolated nerve fibers were compared with electrophysiological characteristics obtained by the voltage clamp method. A definite parallel was found between the degree of morphological changes in the paranodal myelin and the fall in the maximal sodium and potassium conductances of the membrane, while the leakage conductance remained relatively constant. The lower resistance of the sodium and potassium systems to injurious factors evidently reflects the more complex molecular organization of the excitable (sodium and potassium) than of the leakage channels. Considerable changes in the properties of the sodium channels caused by batrachotoxin were not accompanied by any visible changes in the paranodal regions of the myelin sheath. The results are examined from the standpoint of modern views regarding the nature of axo-glial relations in the nerve fiber.A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 400–406, July–August, 1978.  相似文献   

5.
The coordination of the vertebrate nervous system requires high velocity signal transmission between different brain areas. High speed nerve conduction is achieved in the myelinated fibers of both the central and the peripheral nervous system where the myelin sheath acts as an insulator of the axon. The interactions between the glial cell and the adjacent axon, namely axo-glial interactions, segregate the fiber in distinct molecular and functional domains that ensure the rapid propagation of action potentials. These domains are the node of Ranvier, the paranode, the juxtaparanode and the internode and are characterized by multiprotein complexes between voltage-gated ion channels, cell adhesion molecules, members of the Neurexin family and cytoskeletal proteins. In the present review, we outline recent evidence on the key players of axo-glial interactions, depicting their importance in myelinated fiber physiology and disease.  相似文献   

6.
1. Conduction of impulses in peripheral myelinated fibers of a nerve trunk is a continuous process, since with uninjured nerve fibers: (a) within each internodal segment the conduction time increases continuously and linearly with increasing conduction distance; (b) the presence of nodes of Ranvier does not result in any detectable discontinuity in the conduction of the impulse; (c) the ascending phase of the spike always has an S shape and never presents signs of fractionation; (d) the shape and magnitude of the spike are constant at all points of each internodal segment. 2. Records have been presented of the external logitudinal current that flows during propagation of an impulse in undissected single nerve fiber (Fig. 6). 3. Propagation of impulses across a conduction block occurs with a readily demonstrable discontinuity.  相似文献   

7.
The nonlinear cable equation was solved numerically by means of an implicit procedure. The correlation between end-plate length and fiber diameter was determined in frog (Rana pipiens) sartorius muscles stained with gold chloride (Löwit, 1875). The diameter of the fibers stained by the Löwit method was 80 (74-85) micron (median and its 95% confidence interval for 52 fibers), the length of the end plates in the same fibers was 382 (353-417) micron. The fibers simulated were 80 micron in diameter. To solve the equation the muscle fibers were represented by 500 segments 20 micron long, and the equation was solved in steps of 10 microseconds; a double exponential function was incorporated to the first seven segments to represent the neuromuscular junction. The potential of the first segment of the cable was set to the clamping level and the membrane potential of the remaining segments calculated. The current needed to hold the first segment was estimated by adding the current flowing through the first segment to the current flowing from it to the second segment. Our results indicate that the lack of space clamp in the point voltage-clamp studies of the frog neuromuscular junction introduces serious errors in the estimates of the end-plate conductance value, the kinetics of the conductance changes, and the reversal potential of the end-plate currents. The possibility of an efficient voltage-clamp technique is also explored. Our calculations suggest that the study of end-plate current and conductance is possible with little error if the end-plate potential is controlled at both ends of the synaptic area simultaneously.  相似文献   

8.
Quantitative observation of nerve fiber sections is often complemented by morphological analysis in both research and clinical condition. However, existing manual or semi-automated methods are tedious and labour intensive, fully automated morphometry methods are complicated as the information of color or gray images captured by traditional microscopy is limited. Moreover, most of the methods are time-consuming as the nerve sections need to be stained with some reagents before observation. To overcome these shortcomings, a molecular hyperspectral imaging system is developed and used to observe the spinal nerve sections. The molecular hyperspectral images contain both the structural and biochemical information of spinal nerve sections which is very useful for automatic identification and quantitative morphological analysis of nerve fibers. This characteristic makes it possible for researchers to observe the unstained spinal nerve and live cells in their native environment. To evaluate the performance of the new method, the molecular hyperspectral images were captured and the improved spectral angle mapper algorithm was proposed and used to segment the myelin contours. Then the morphological parameters such as myelin thickness and myelin area were calculated and evaluated. With these morphological parameters, the three dimension surface view images were drawn to help the investigators observe spinal nerve at different angles. The experiment results show that the hyperspectral based method has the potential to identify the spinal nerve more accurate than the traditional method as the new method contains both the spectral and spatial information of nerve sections.  相似文献   

9.
Quantitative observation of nerve fiber sections is often complemented by morphological analysis in both research and clinical condition. However, existing manual or semi-automated methods are tedious and labour intensive, fully automated morphometry methods are complicated as the information of color or gray images captured by traditional microscopy is limited. Moreover, most of the methods are time-consuming as the nerve sections need to be stained with some reagents before observation. To overcome these shortcomings, a molecular hyperspectral imaging system is developed and used to observe the spinal nerve sections. The molecular hyperspectral images contain both the structural and biochemical information of spinal nerve sections which is very useful for automatic identification and quantitative morphological analysis of nerve fibers. This characteristic makes it possible for researchers to observe the unstained spinal nerve and live cells in their native environment. To evaluate the performance of the new method, the molecular hyperspectral images were captured and the improved spectral angle mapper algorithm was proposed and used to segment the myelin contours. Then the morphological parameters such as myelin thickness and myelin area were calculated and evaluated. With these morphological parameters, the three dimension surface view images were drawn to help the investigators observe spinal nerve at different angles. The experiment results show that the hyperspectral based method has the potential to identify the spinal nerve more accurate than the traditional method as the new method contains both the spectral and spatial information of nerve sections.  相似文献   

10.
Action potential (AP) propagation in myelinated nerves requires clustered voltage gated sodium and potassium channels. These channels must be specifically localized to nodes of Ranvier where the AP is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral nervous system (PNS) and central nervous system (CNS).Axons conduct electrical signals, called action potentials (APs), among neurons in a circuit in response to sensory input, and between motor neurons and muscles. In mammals and other vertebrates, many axons are myelinated. Myelin, made by Schwann cells and oligodendrocytes in the peripheral nervous system (PNS) and central nervous system (CNS), respectively, is a multilamellar sheet of glial membrane that wraps around axons to increase transmembrane resistance and decrease membrane capacitance. Although myelin is traditionally viewed as a passive contributor to nervous system function, it is now recognized that myelinating glia also play many active roles including regulation of axon diameter, axonal energy metabolism, and the clustering of ion channels at gaps in the myelin sheath called nodes of Ranvier. Together, the active and passive properties conferred on axons by myelin, result in axons with high AP conduction velocities, low metabolic demands, and reduced space requirements as compared with unmyelinated axons. Thus, myelin and the clustering of ion channels in axons permitted the evolution of the complex nervous systems found in vertebrates. This review highlights the current understanding of the axonal intrinsic and glial extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the PNS and CNS.  相似文献   

11.
Parasympathetic preganglionic neurons in the cat sacral spinal cord innervate intraspinal neurons and pelvic target organs. Retrograde tracing studies have revealed little of the morphology of their axons including their origin, initial segments, or their myelin, due to methodological limitations. Intracellular labeling of single neurons with neurobiotin or HRP has overcome these problems. Axons were studied in 24 preganglionic neurons. In 21 neurons the axon originated as a branch of a dendrite, without a detectable axon hillock, at distances from the soma ranging from 10 to 110 μm (average 34.1 μm ). In 3 neurons the axon was derived from the soma. Initial segments, present in all cells, ranged from 15 to 40 μm (average 26.8 μm). Nearly all axons followed the initial segment with unmyelinated segments that varied between 59 to 630 μm, followed by myelin and nodes of Ranvier. Internodal distances were variable and relatively short (average 93 μm). Axonal diameters measured over the intraspinal course in 18 axons averaged 1.3 μm (range 0.6–2.4 μm) and were relatively constant compared with other neurons. Spine-like protrusions were observed on the initial segments of 12 cells. Axon collaterals originated from unmyelinated sections and nodes of Ranvier. Antidromic action potentials showing initial segment, soma-dendritic inflections, did not differentiate between soma-derived and dendrite-derived axons. The data suggest that axons originating from a dendrite are the normal structure of preganglionic neurons in the lateral sacral parasympathetic nucleus. It is proposed that the particular structure of these axons may be part of a timing mechanism that coordinates preganglionic neurons with other spinal neurons involved in target organ reflexes.  相似文献   

12.
Myelination allows the fast propagation of action potentials at a low energetic cost. It provides an insulating myelin sheath regularly interrupted at nodes of Ranvier where voltage-gated Na+ channels are concentrated. In the peripheral nervous system, the normal function of myelinated fibers requires the formation of highly differentiated and organized contacts between the myelinating Schwann cells, the axons and the extracellular matrix. Some of the major molecular complexes that underlie these contacts have been identified. Here we review current knowledge in this field.  相似文献   

13.
In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7) potassium channels is based on linkage to the actin–spectrin cytoskeleton, which is mediated by the adaptor protein ankyrin-G. We identified key steps in the evolution of this axonal channel clustering. The anchor motif for sodium channel clustering evolved early in the chordate lineage before the divergence of the wormlike cephalochordate, amphioxus. Axons of the lamprey, a very primitive vertebrate, exhibited some invertebrate features (lack of myelin, use of giant diameter to hasten conduction), but possessed narrow initial segments bearing sodium channel clusters like in more recently evolved vertebrates. The KCNQ potassium channel anchor motif evolved after the divergence of lampreys from other vertebrates, in a common ancestor of shark and humans. Thus, clustering of voltage-gated sodium channels was a pivotal early innovation of the chordates. Sodium channel clusters at the axon initial segment serving the generation of action potentials evolved long before the node of Ranvier. KCNQ channels acquired anchors allowing their integration into pre-existing sodium channel complexes at about the same time that ancient vertebrates acquired myelin, saltatory conduction, and hinged jaws. The early chordate refinements in action potential mechanisms we have elucidated appear essential to the complex neural signaling, active behavior, and evolutionary success of vertebrates.  相似文献   

14.
The presence of degradation products of the myelin/oligodendrocyte glycoprotein (MOG) and a new myelin/oligodendrocyte associated protein, FD1, defined by a monoclonal antibody was established in a subfraction (the floating fraction, or FF) of adult rabbit CNS. The histochemical distribution of FD1 was determined by indirect immunofluorescense using conventional and confocal microscopy. FD1 was found to be present in oligodendrocytes, and at the outer rim of CNS myelin sheaths. Strong antibody reactivity was noted at nodes of Ranvier, as well as in regions with a high nodal density. No staining of compact myelin was seen. In the PNS, inner and outer cytoplasmic compartments of the Schwann cells as well as their cell bodies were stained, with no staining of compact myelin. The FF has previously been shown to be highly enriched in Marchi-positive bodies. These structures are situated paranodally in the CNS of myelinated nerve fibers, and their presence has been interpreted as reflections of myelin breakdown and turnover occurring in association with myelin sheath segments situated close to nodes at Ranvier in adult, normal vertebrate CNS. The present findings extend previous observations of partially degraded myelin-associated proteins in the FF, and give further results indicating that Marchi-positive bodies are aspects of intermediate stages in myelin catabolism.  相似文献   

15.
Mechanisms of axon ensheathment and myelin growth   总被引:11,自引:0,他引:11  
The evolution of complex nervous systems in vertebrates has been accompanied by, and probably dependent on, the acquisition of the myelin sheath. Although there has been substantial progress in our understanding of the factors that determine glial cell fate, much less is known about the cellular mechanisms that determine how the myelin sheath is extended and stabilized around axons. This review highlights four crucial stages of myelination, namely, the selection of axons and initiation of cell-cell interactions between them and glial cells, the establishment of stable intercellular contact and assembly of the nodes of Ranvier, regulation of myelin thickness and, finally, longitudinal extension of myelin segments in response to the lengthening of axons during postnatal growth.  相似文献   

16.
Implementation of double cable models to simulate the behavior of myelinated peripheral nerve fibers requires defining a segmentation of the internode between successive nodes of Ranvier. The number of internodal segments is a model parameter that is not well agreed on, with values in the literature ranging from 1 to more than 500. Moreover, a lot of studies also lack a sensitivity study or a rationale behind the implementation used. In a model of a myelinated nerve fiber developed in our group, the segmentation scheme (i.e., the number of segments and their individual morphology) strongly influenced model outcomes such as action potential shape and velocity, stimulation threshold and absolute refractory period. In the present study these influences were investigated systematically in homogeneous neurons with different diameters. Uniformly segmented internodes were found to require several hundreds of segments (and associated computational power) to reach model outcomes differing by less than 1 % from the asymptotic value. In fact, in the majority of segmentation schemes the main determinant is not the number of segments, but the length λ of the internodal segments directly adjacent to the nodes of Ranvier. If λ is larger than approximately 10 μm, model outcomes for the tested fibers are almost independent of the total number of segments. Furthermore, λ can be optimized to enable models using just three segments per internode, to reach physiologically relevant model outcomes with limited computational resources. However, to study anatomical or physiological details of the internode itself, an appropriately detailed segmentation scheme is crucial.  相似文献   

17.
Optical measurement of conduction in single demyelinated axons   总被引:1,自引:0,他引:1       下载免费PDF全文
Demyelination was initiated in Xenopus sciatic nerves by an intraneural injection of lysolecithin over a 2-3-mm region. During the next week macrophages and Schwann cells removed all remaining damaged myelin by phagocytosis. Proliferating Schwann cells then began to remyelinate the axons, with the first few lamellae appearing 13 d after surgery. Action potentials were recorded optically through the use of a potential-sensitive dye. Signals could be detected both at normal nodes of Ranvier and within demyelinated segments. Before remyelination, conduction through the lesion occurred in only a small fraction of the fibers. However, in these particular cases we could demonstrate continuous (nonsaltatory) conduction at very low velocities over long (greater than one internode) lengths of demyelinated axons. We have previously found through loose patch clamp experiments that the internodal axolemma contains voltage-dependent Na+ channels at a density approximately 4% of that at the nodes. These channels alone, however, are insufficient for successful conduction past the transition point between myelinated and demyelinated regions. Small improvements in the passive cable properties of the axon, adequate for propagation at this site, can be realized through the close apposition of macrophages and Schwann cells. As the initial lamellae of myelin appear, the probability of success at the transition zone increases rapidly, though the conduction velocity through the demyelinated segment is not appreciably changed. A detailed computational model is used to test the relative roles of the internodal Na+ channels and the new extracellular layer. The results suggest a possible mechanism that may contribute to the spontaneous recovery of function often seen in demyelinating disease.  相似文献   

18.
The posterior end of the aquatic oligochaete, Branchiura sowerbyi (Tubificidae) protrudes above the sediments and is specialized to carry out several rhythmic respiratory movements. These include 1) waves of flexion by paired gill filaments on each posterior segment, 2) body undulations, and 3) rectal water pumping. Since execution of these behaviors renders the worm's posterior end vulnerable to predation, appropriate neurobehavioral mechanisms have evolved that permit extremely rapid escape of tail segments into the sediments. Some of these mechanisms include 1) highly sensitive sensory apparatus for detecting substrate vibrations, water displacements, or touch, 2) large diameter and rapidly conducting lateral giant nerve fibers, and 3) adequacy of a single lateral giant fiber impulse for evoking an all-or-none longitudinal muscle contraction. The significance of these posterior respiratory and escape reflex specializations are discussed in relation to possible predator foraging strategies.  相似文献   

19.
M M Lamb  B Daneholt 《Cell》1979,17(4):835-848
  相似文献   

20.
甘思德  范明 《动物学报》1995,41(2):185-189
将夹伤的大鼠坐骨神经分离成单根纤维,在光镜、扫描和透射电镜下观察伤后98天内郎氏结的构筑变化。发现损伤使细胞器的轴浆转运阻断,积累的退变细胞器使结区的轴突外凸,郎氏结构构筑变形,髓鞘板层失序,轴膜崩解,积累的细胞器逸出,并看到仅残存的郎氏结近心端构筑、由近心端的母体神经和远心端的再生神经共同构筑的新生郎氏结,以及新生郎氏结构的发育过程等特征性图象。再生轴突中转运的微管等细胞器和施旺细胞中富含的线粒  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号