首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Averages were made of neuronal spike activity recorded successively from eight relay regions along the auditorimotor pathway of naive cats and cats conditioned to blink in response to a 70 dB click conditioned stimulus (CS). It was hypothesized that the patterns of activity could be distinguished as sensory or motor by differences in their relationship to the pattern of the acoustic CS vs that of the conditioned response (CR). If so, it was also hypothesized that the acoustic stimulus would be better expressed at early auditorimotor relays and the motor response at later relays along the pathway. To test these hypotheses, Pearson correlation coefficients were calculated between the mean patterns of unit activity at each of the auditorimotor relays and (1) the rectified sound pattern of the CS and (2) the averaged, rectified electromyographic (EMG) activity of the muscles (orbicularis oculis) that produced the CR. In both naive and conditioned cats, there were significant positive correlations between the patterns of spike activity and the sound at early relays along the auditorimotor pathway such as the cochlear nucleus and inferior colliculus. In the conditioned animals, the spike activity of later nuclei in the auditorimotor pathway, such as the rostral thalamus and the motor cortex, had the highest positive correlations with the motor response. These correlations were low in the naive animals. Thus, the mean patterns of spike activity along the auditorimotor pathway appeared to distinguish the sound from the motor response and provided a glimpse of the process supporting transformation of the CS into the incipient CR.  相似文献   

2.
Activity of 112 neurons of the precruciate motor cortex in cats was studied during a forelimb placing reaction to tactile stimulation of its distal parts. The latent period of response of the limb to tactile stimulation was: for flexors of the elbow (biceps brachii) 30–40 msec, for the earliest reponses of cortical motor neurons about 20 msec. The biceps response was observed 5–10 msec after the end of stimulation of the cortex with a series of pulses lasting 25 msec. Two types of excitatory responses of the neurons were identified: responses of sensory type observed to each tactile stimulation of the limb and independent of the presence or absence of motion, and responses of motor type, which developed parallel with the motor response of the limb and were not observed in the absence of motion. The minimal latent period of the responses of motor type was equal to the latent period of the sensory responses to tactile stimulation (20±10 msec). Stimulation of the cortex through the recording microelectrode at the site of derivation of unit activity, which increased during active flexion of the forelimb at the elbow (11 stimuli at intervals of 2.5 msec, current not exceeding 25 µA), in 70% of cases evoked an electrical response in the flexor muscle of the elbow.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 115–123, March–April, 1977.  相似文献   

3.
One might take the exploration of sensory cortex in the first decades of the last century as the opening chapter of modern neuroscience. The combined approaches of (i) measuring effects of restricted ablation on functional capacities, both in the clinic and the laboratory, together with (ii) anatomical investigations of cortical lamination, arealization, and connectivity, and (iii) the early physiological probing of sensory representations, led to a fundamental body of knowledge that remains relevant to this day. In our time, there can be little doubt that its organization as a mosaic of columnar modules is the pervasive functional property of mammalian sensory cortex [Brain 120 (1997) 701]. If one accepts the assertion that columns and maps must improve the functioning of the brain (why else would they be the very hallmark of neocortex?), then the inevitable question is: exactly what advantages do they permit? In this review of our recent presentation at the workshop on Homeostasis, plasticity and learning at the Institut Henri Poincaré, we will outline a systematic approach to investigating the role of modular, map-like cortical organization in the processing of sensory information. We survey current evidence concerning the functional significance of cortical maps and modules, arguing that sensory cortex is involved not solely in the online processing of afferent data, but also in the storage and retrieval of information. We also show that the topographic framework of primary sensory cortex renders the encoding of sensory information efficient, fast and reliable.  相似文献   

4.
The signals that olfactory receptor axons use to navigate to their target in the CNS are still not well understood. In the moth Manduca sexta, the primary olfactory pathway develops postembryonically, and the receptor axons navigate from an experimentally accessible sensory epithelium to the brain along a pathway long enough for detailed study of regions in which axon behavior changes. The current experiments ask whether diffusible factors contribute to receptor axon guidance. Explants were made from the antennal receptor epithelium and co-cultured in a collagen gel matrix with slices of various regions of the brain. Receptor axons were attracted toward the central regions of the brain, including the protocerebrum and antennal lobe. Receptor axons growing into a slice of the most proximal region of the antennal nerve, where axon sorting normally occurs, showed no directional preference. When the antennal lobe was included in the slice, the receptor axons entering the sorting region grew directly toward the antennal lobe. Taken together with the previous in vivo experiments, the current results suggest that an attractive diffusible factor can serve as one cue to direct misrouted olfactory receptor axons toward the medial regions of the brain, where local cues guide them to the antennal lobe. They also suggest that under normal circumstances, in which the receptor axons follow a pre-existing pupal nerve to the antennal lobe, the diffusible factor emanating from the lobe acts in parallel and at short range to maintain the fidelity of the path into the antennal lobe.  相似文献   

5.
The X-ray crystal structure of an excised group II self-splicing intron was recently solved by the Pyle group. Here we review some of the notable features of this structure and what they may tell us about the catalytic active site of the group II ribozyme and potentially the spliceosome. The new structure validates the central role of domain V in both the structure and catalytic function of the ribozyme and resolves several outstanding puzzles raised by previous biochemical, genetic and structural studies. While lacking both exons as well as the cleavage sites and nucleophiles, the structure reveals how a network of tertiary interactions can position two divalent metal ions in a configuration that is ideal for catalysis.  相似文献   

6.
Reports of plant-like and bacterial-like genes for a number of parasitic organisms, most notably those within the Apicomplexa and Kinetoplastida, have appeared in the literature over the last few years. Among the apicomplexan organisms, following discovery of the apicomplexan plastid (apicoplast), the discovery of plant-like genes was less surprising although the extent of transfer and the relationship of transferred genes to the apicoplast remained unclear. We used new genome sequence data to begin a systematic examination of the extent and origin of transferred genes in the Apicomplexa combined with a phylogenomic approach to detect potential gene transfers in four apicomplexan genomes. We have detected genes of algal nuclear, chloroplast (cyanobacterial) and proteobacterial origin. Plant-like genes were detected in species not currently harbouring a plastid (e.g. Cryptosporidium parvum) and putatively transferred genes were detected that appear to be unrelated to the function of the apicoplast. While the mechanism of acquisition for many of the identified genes is not certain, it appears that some were most likely acquired via intracellular gene transfer from an algal endosymbiont while others may have been acquired via horizontal gene transfer.  相似文献   

7.
Young Xenopus tadpoles were used to test whether the pattern of discharge in specific sensory neurons can determine the motor response of a whole animal. Young Xenopus tadpoles show two main rhythmic behaviours: swimming and struggling. Touch-sensitive skin sensory neurons in the spinal cord of immobilised tadpoles were penetrated singly or in pairs using microelectrodes to allow precise control of their firing patterns. A single impulse in one Rohon-Beard neuron (= light touch) could sometimes trigger “fictive” swimming. Two to six impulses at 30–50 Hz (= a light stroke) reliably triggered fictive swimming. Neither stimulus evoked fictive struggling. Twenty-five or more impulses at 30–50 Hz (= pressure) could evoke a pattern of rhythmic bursts, distinct from swimming and suitable to drive slower, stronger movements. This pattern showed some or all the characteristics of “fictive” struggling. These results demonstrate clearly that sensory neurons can determine the pattern of motor output simply by their pattern of discharge. This provides a simple form of behavioural selection according to stimulus. Accepted: 28 November 1996  相似文献   

8.
In mammals, auditory information is processed by the hair cells (HCs) located in the cochlea and then rapidly transmitted to the CNS via a specialized cluster of bipolar afferent connections known as the spiral ganglion neurons (SGNs). Although many anatomical aspects of SGNs are well described, the molecular and cellular mechanisms underlying their genesis, how they are precisely arranged along the cochlear duct, and the guidance mechanisms that promote the innervation of their hair cell targets are only now being understood. Building upon foundational studies of neurogenesis and neurotrophins, we review here new concepts and technologies that are helping to enrich our understanding of the development of the nervous system within the inner ear.  相似文献   

9.
Crucial for survival, the central nervous system must reliably process sensory information over all stages of a hibernation bout to ensure homeostatic regulation is maintained and well-matched to dramatically altered behavioral states. Comparing neural responses in the nucleus tractus solitarius of rats and euthermic Syrian hamsters, we tested the hypothesis that hamster neurons have adaptations sustaining signal processing while conserving energy. Using patch-clamp techniques, we classified second-order neurons in the nucleus as rapid-onset or delayed-onset spiking phenotypes based on their spiking onset to a depolarizing pulse (following a −80 mV prepulse). As temperature decreased from 33 to 15°C, the excitability of all neurons decreased. However, hamster rapid-onset spiking neurons had the highest spiking response and shortest action potential width at every temperature, while hamster delayed-onset spiking neurons had the most negative resting membrane potential. The frequency of spontaneous excitatory postsynaptic currents in both phenotypes decreased as temperature decreased, yet the amplitudes of tractus solitarius stimulation-evoked currents were greater in hamsters than in rats regardless of phenotype and temperature. Changes were significant (P < 0.05), supporting our hypothesis by showing that, as temperature falls, rapid-onset neurons contribute more to signal processing but less to energy conservation than do delayed-onset neurons.  相似文献   

10.
Protection from extinction of conditioned fear has been demonstrated when a conditioned inhibitor of fear is presented during extinction treatment. The present study assessed if similar results could be obtained during the analogous habituation of unconditioned fear. The neophobic response typically elicited by the presentation of a novel flavor was used as a model of unconditioned fear. Consumption by rats was used to ascertain the impact of nonreinforced exposure to a novel flavor either alone, in compound with another novel flavor, or in compound with a safe flavor (i.e., a flavor previously trained as a conditioned inhibitor for illness). The presentation of the novel flavor alone in the absence of illness reduced neophobia. However, exposure to the novel flavor in compound with the safe flavor reduced habituation of neophobia. This effect was not observed when the novel flavor was exposed in compound with another novel flavor. These results suggest that removing safe stimuli from the therapeutical environment might improve the effectiveness of exposure therapy in the treatment of unconditioned fear.  相似文献   

11.
Deep-water sharks are among the most vulnerable deep-water taxa because of their extremely conservative life-history strategies (i.e., late maturation, slow growth, and reproductive rates), yet little is known about their biology and ecology. Thus, this study aimed at investigating the trophic ecology of five deep-water shark species, the birdbeak dogfish (Deania calcea), the arrowhead (D. profundorum), the smooth lanternshark (Etmopterus pusillus), the blackmouth catshark (Galeus melastomus) and the knifetooth dogfish (Scymnodon ringens) sampled onboard a crustacean bottom-trawler off the south-west coast of Portugal. We combined carbon and nitrogen stable isotopes with RNA and DNA (RD) ratios to investigate the main groups of prey assimilated by these species and their nutritional condition, respectively. Stable isotopes revealed overall small interspecific variability in the contribution of different taxonomic groups to sharks' tissues, as well as in the origin of their prey. S. ringens presented higher δ15N and δ13C values than the other species, suggesting reliance on bathyal cephalopods, crustaceans and teleosts; the remaining species likely assimilated bathy-mesopelagic prey. The RD ratios indicated that most of the individuals had an overall adequate nutritional condition and had recently eaten. This information, combined with the fact that stable isotopes indicate that sharks assimilated prey from the local or nearby food webs (including commercially important shrimps), suggests a potential overlap between this fishing area and their foraging grounds, which requires further attention.  相似文献   

12.
We studied a specific sensory-motor pathway in the isolated leech ganglia. Pressure-sensitive mechanosensory neurons were stimulated with trains of action potentials at 5–20 Hz while recording the responses of the annulus erector motorneurons that control annuli erection. The response of the annulus erector neurons was a succession of excitatory postsynaptic potentials followed by inhibitory postsynaptic potentials. The excitatory postsynaptic potentials had a brief time-course while the inhibitory postsynaptic potentials had a prolonged time-course that enabled their temporal summation. Thus, the net effect of pressure-sensitive neuron stimulation on the annulus erector neurons was inhibitory. Both phases of the response were mediated by chemical transmission; the excitatory postsynaptic potentials were transmitted via a monosynaptic pathway, and the inhibitory postsynaptic potentials via a polysynaptic one. The pattern of expression of this dual response depended on the field of innervation of the sensory neuron and it was under the influence of cell 151, a non-spiking interneuron, that could regulate the expression of the hyperpolarization. The interaction between pressure-sensitive neurons and annulus erector neuron reveals how sensory specificity, connectivity pattern and regulatory elements interplay in a specific sensory-motor network. Accepted: 6 November 1998  相似文献   

13.
The phosphorylated, activated cytoplasmic domains of the transforming growth factor-beta (TGFbeta) receptors were used as probes to screen an expression library that was prepared from a highly TGFbeta-responsive intestinal epithelial cell line. One of the TGFbeta receptor-interacting proteins isolated was identified to be the mammalian homologue of the LC7 family (mLC7) of dynein light chains (DLCs). This 11-kDa cytoplasmic protein interacts with the TGFbeta receptor complex intracellularly and is phosphorylated on serine residues after ligand-receptor engagement. Forced expression of mLC7-1 induces specific TGFbeta responses, including an activation of Jun N-terminal kinase (JNK), a phosphorylation of c-Jun, and an inhibition of cell growth. Furthermore, TGFbeta induces the recruitment of mLC7-1 to the intermediate chain of dynein. A kinase-deficient form of TGFbeta RII prevents both mLC7-1 phosphorylation and interaction with the dynein intermediate chain (DIC). This is the first demonstration of a link between cytoplasmic dynein and a natural growth inhibitory cytokine. Furthermore, our results suggest that TGFbeta pathway components may use a motor protein light chain as a receptor for the recruitment and transport of specific cargo along microtublules.  相似文献   

14.
Neurological dysfunction after traumatic brain injury (TBI) is associated with pathology in cortical, subcortical, and brainstem nuclei. Our laboratory has reported neuropathology and microglial activation in the somatosensory barrel cortex (S1BF) and ventral posterior medial thalamus (VPM) after diffuse TBI in the rat, which correlated with post-injury whisker sensory sensitivity. The present study extends our previous work by evaluating pathology in whisking-associated sensory and motor brainstem nuclei. Brains from adult, male rats were recovered over 1 month after midline fluid percussion or sham injury. The principal trigeminal nucleus (PrV, sensory nucleus) and facial nucleus (VIIN, motor nucleus) were examined for neuropathology (silver histochemistry) and microglial activation (Iba1). Significant neuropathology in PrV was evident at 2 and 7 days post-injury compared to sham. Iba1-labeled microglia showed swollen somata and thickened processes over 1 month post-injury. In contrast, the VIIN showed non-significant neuropathology and reduced labeling of activated Iba1 microglia over 1 month post-injury. Together with our previous data, neuropathology and neuroinflammation in the whisker somatosensory pathway may contribute to post-injury sensory sensitivity more than the motor pathway. Whether these findings are direct results of the mechanical injury or consequences of progressive degeneration remains to be determined.  相似文献   

15.
P19(INK4d) is a tumor suppressing protein and belongs to a family of cyclin D-dependent kinase inhibitors of CDK4 and CDK6, which play a key role in human cell cycle control. P19 comprises ten alpha-helices arranged sequentially in five ankyrin repeats forming an elongated structure. This rather simple topology, combined with its physiological function, makes p19 an interesting model protein for folding studies. Urea-induced unfolding transitions monitored by far-UV CD and phenylalanine fluorescence coincide and suggest a two-state mechanism for equilibrium unfolding. Unfolding of p19 followed by 2D (1)H-(15)N HSQC spectra revealed a third species at moderate urea concentrations with a maximum population of about 30 % near 3.2 M urea. It shows poor chemical shift dispersion, but cross-peaks emerge for some residues that are distinct from the native or unfolded state. This equilibrium intermediate either arises only at high protein concentrations (as in the NMR experiment) or has similar optical properties to the unfolded state. Stopped-flow far-UV CD experiments at various urea concentrations revealed that alpha-helical structure is formed in three phases, of which only the fastest phase (10 s(-1)) depends upon the urea concentration. The kinetic of the slowest phase (0.017 s(-1)) can be resolved by 1D real-time NMR and accelerated by cyclophilin. It is limited in rate by prolyl isomerization, and native-like ordered structure cannot form prior to this isomerization. The two fast phases lead to 83 % native protein within the dead time of the NMR experiment. In contrast to p16(INK4a), which exhibits only a marginal stability and high unfolding rates, p19 shows the expected stability for a protein of this size with a clear kinetic barrier between the unfolded and folded state. Therefore, p19 might complement the function of less stable INK4 inhibitors in cell cycle control under unfavorable conditions.  相似文献   

16.
Auditory brainstem response (ABR) techniques, an electrophysiological far-field recording method widely used in clinical evaluation of human hearing, were adapted for fishes to overcome the major limitations of traditional behavioral and electrophysiological methods (e.g., invasive surgery, lengthy training of fishes, etc.) used for fish hearing research. Responses to clicks and tone bursts of different frequencies and amplitudes were recorded with cutaneous electrodes. To evaluate the effectiveness of this method, the auditory sensitivity of a hearing specialist (goldfish, Carassius auratus) and a hearing generalist (oscar, Astronotus ocellatus) was investigated and compared to audiograms obtained through psychophysical methods. The ABRs could be obtained between 100 Hz and 2000 Hz (oscar), and up to 5000 Hz (goldfish). The ABR audiograms are similar to those obtained by behavioral methods in both species. The ABR audiogram of curarized (i.e., Flaxedil-treated) goldfish did not differ significantly from two previously published behavioral curves but was lower than that obtained from uncurarized fish. In the oscar, ABR audiometry resulted in lower thresholds and a larger bandwidth than observed in behavioral tests. Comparison between methods revealed the advantages of this technique: rapid evaluation of hearing in untrained fishes, and no limitations on repeated testing of animals. Accepted: 8 August 1997  相似文献   

17.
Integral membrane proteins (IMPs) control countless fundamental biological processes and constitute the majority of drug targets. For this reason, uncovering their molecular mechanism of action has long been an intense field of research. They are, however, notoriously difficult to work with, mainly due to their localization within the heterogeneous of environment of the biological membrane and the instability once extracted from the lipid bilayer. High‐resolution structures have unveiled many mechanistic aspects of IMPs but also revealed that the elucidation of static pictures has limitations. Hydrogen–deuterium exchange coupled to mass spectrometry (HDX‐MS) has recently emerged as a powerful biophysical tool for interrogating the conformational dynamics of proteins and their interactions with ligands. Its versatility has proven particularly useful to reveal mechanistic aspects of challenging classes of proteins such as IMPs. This review recapitulates the accomplishments of HDX‐MS as it has matured into an essential tool for membrane protein structural biologists.  相似文献   

18.
Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.  相似文献   

19.
The genomic RNA of encephalomyocarditis virus (EMCV) encodes a single polyprotein, and the primary scission of the polyprotein occurs between nonstructural proteins 2A and 2B by an unknown mechanism. To gain insight into the mechanism of 2A-2B processing, we first translated the 2A-2B region in vitro with eukaryotic and prokaryotic translation systems. The 2A-2B processing occurred only in the eukaryotic systems, not in the prokaryotic systems, and the unprocessed 2A-2B protein synthesized by a prokaryotic system remained uncleaved when incubated with a eukaryotic cell extract. These results suggest that 2A-2B processing is a eukaryote-specific, co-translational event. To define the translation factors required for 2A-2B processing, we constituted a protein synthesis system with eukaryotic elongation factors 1 and 2, eukaryotic release factors 1 and 3 (eRF1 and eRF3), aminoacyl-tRNA synthetases, tRNAs, ribosome subunits, and a plasmid template that included the hepatitis C virus internal ribosome entry site. We successfully reproduced 2A-2B processing in the reconstituted system even without eRFs. Our results indicate that this unusual event occurs in the elongation phase of translation.  相似文献   

20.
Tzschentke TM 《Amino acids》2000,19(1):211-219
Summary. This review will briefly summarize experimental evidence for an involvement of the medial prefrontal cortex (mPFC) in reward-related mechanisms in the rat brain. The mPFC is part of the mesocorticolimbic dopaminergic system. It receives prominent dopaminergic input from the ventral tegmental area (VTA) and, via the mediodorsal thalamus, inputs from other subcortical basal ganglia structures. In turn it projects back to the VTA and the nucleus accumbens septi (NAS), which are generally considered as main components of the brain reward system. Evidence for the involvement of the mPFC in reward-related mechanisms comes mainly from three types of studies, conditioned place preference (CPP), intracranial self-stimulation (ICSS), and self-administration. Work will be summarized that has shown that certain drugs injected into the mPFC can produce CPP or that lesions of the mPFC can disrupt the development of CPP, that ICSS is obtained with the stimulating electrode placed in the mPFC, and that certain drugs are self-administered into the mPFC or that lesions of the mPFC disrupt the peripheral self-administration of certain drugs. However, it has also been shown that the role of the mPFC in reward is not uniform. For example, the mPFC appears to be particularly important for the rewarding actions of cocaine, while it appears not to be important for the rewarding actions of amphetamine. Also, different subareas of the mPFC appear to be differentially involved in the rewarding actions of different drugs. Taken together, the available evidence shows that some drugs can produce reward directly within the mPFC, and that some drugs, even though not having direct rewarding effects within the mPFC, depend on the function of the mPFC for the mediation of their rewarding effects. Received August 31, 1999 Accepted September 20, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号