首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of heat-induced pain on absolute thresholds, sensation magnitudes and amplitude-difference thresholds were measured at 10 and 100 Hz. Consistent with previous results, heat-induced pain elevated the absolute thresholds by approximately 8.0 dB and lessened the magnitudes of tactile sensations during pain as compared to the non-painful condition. In contrast to these effects, the discriminability of change in the intensity of the vibrotactile stimuli was unaffected by the presence of pain indicating that the effect of pain on tactile sensations is more likely due to sensory rather than cognitive processes (i.e., attention) and that the mechanisms underlying tactile sensitivity as compared to discriminability are different.  相似文献   

2.
The effects of skin indentation depth and rate on threshold and suprathreshold tactile sensations were investigated. Indentation rates between 0.3 and 10 mm/sec had little effect on the absolute tactile thresholds measured in terms of indentation depth. Slower rates resulted in increased absolute thresholds.

Estimates of the growth in intensity of tactile sensations were made as functions of indentation depth and rate. The fastest rate used (10 mm/sec), for a given depth of indentation, produced the most intense sensation; the slowest (0.1 mm/sec), the least intense sensation. The tactile sensation magnitude estimates, with rate as the parameter, could be described by power functions. At the slowest indentation rate the exponent of the function was 1.36. At faster indentation rates (0.4, 1.0, and 10 mm/sec), two functions of markedly different slopes were required to describe the estimates. The exponents of the power functions were between 0.38 and 0.49 for indentation depths up to about 0.9 mm, and between 1.07 and 1.43 for deeper indentation depths.  相似文献   

3.
The influence of heat- and cold-induced pain on tactile sensitivity, a "touch gate", was measured under conditions in which the location of the noxious stimuli was varied with respect to the tactile stimulus applied to the thenar eminence of humans. Vibrotactile thresholds were measured in the absence of pain and during administration of a painful stimulus, with the stimulus frequencies selected to activate independently the four psychophysical channels hypothesized to exist in human glabrous skin. Heat-induced pain produced by spatially co-localizing the noxious stimuli with the tactile stimuli was found, on average, to elevate threshold amplitude by 2.2 times (6.7 dB). Co-localized, cold-induced pain raised the average thresholds by about 1.5 times (3.6 dB). Heat-induced pain presented contralaterally produced no change in vibrotactile sensitivity indicating that the effect is probably not due to attentional mechanisms. Ipsilateral heat-induced pain caused an elevation in tactile thresholds even when the noxious and non-noxious stimuli were not co-localized, and the effect may seem to require that the painful stimulus be within the somatosensory region defined possibly in terms of dermatomal organization. Thus the effect is probably related to somatotopic organization and is not peripherally mediated. A brief discussion as to the possible locus of the touch gate within the nervous system is also given.  相似文献   

4.
The influence of heat- and cold-induced pain on tactile sensitivity, a "touch gate", was measured under conditions in which the location of the noxious stimuli was varied with respect to the tactile stimulus applied to the thenar eminence of humans. Vibrotactile thresholds were measured in the absence of pain and during administration of a painful stimulus, with the stimulus frequencies selected to activate independently the four psychophysical channels hypothesized to exist in human glabrous skin. Heat-induced pain produced by spatially co-localizing the noxious stimuli with the tactile stimuli was found, on average, to elevate threshold amplitude by 2.2 times (6.7 dB). Co-localized, cold-induced pain raised the average thresholds by about 1.5 times (3.6 dB). Heat-induced pain presented contralaterally produced no change in vibrotactile sensitivity indicating that the effect is probably not due to attentional mechanisms. Ipsilateral heat-induced pain caused an elevation in tactile thresholds even when the noxious and non-noxious stimuli were not co-localized, and the effect may seem to require that the painful stimulus be within the somatosensory region defined possibly in terms of dermatomal organization. Thus the effect is probably related to somatotopic organization and is not peripherally mediated. A brief discussion as to the possible locus of the touch gate within the nervous system is also given.  相似文献   

5.
The aim of this study was to investigate tactile sensitivity near the site of primary hyperalgesia evoked by capsaicin applied topically to the dorsolateral aspect of the hand. In the first experiment (N = 15), touch thresholds increased in the fifth finger ipsilateral to the topically applied capsaicin, but remained unchanged at greater distances from the site of capsaicin treatment. In a second experiment (N = 12), the effect of the capsaicin treatment on sensations evoked not only by light touch but also by warmth, heat-pain, and pressure-pain to a 2-mm diameter steel probe was investigated in the fifth finger. Again, tactile sensitivity was inhibited at the fifth finger, even though stimulation with a cotton bud evoked no discomfort; moreover, sensitivity to warmth and heat-pain were unimpaired. However, sensitivity to pressure-pain increased in the fifth finger after the capsaicin treatment, possibly due to activation of nociceptors sandwiched between the probe tip and bone that normally responded to sharp stimuli. These findings suggest that the central mechanisms that mediate secondary mechanical hyperalgesia suppress sensitivity to innocuous tactile sensations. This effect may contribute to tactile hypoesthesia in chronic pain conditions.  相似文献   

6.
Threshold electrical reactions of single fibers from the ischiadic nerve of rats to mechanical stimulation and rectangle impulses of focused ultrasound have been compared with respect to the parameters of stimulation to the effect of focused ultrasound on the skin of human fingers evoking different sensations. It was concluded that low-threshold fibers may be associated with tactile reception, mean-threshold ones--with tactile and thermal, whereas high-threshold fibers may be referred to reception of specific skin pain.  相似文献   

7.
The ability to localize a chemical stimulus applied to the skin of the forearm was compared to the ability to localize a punctate tactile stimulus. The chemical stimulus was a single, 6-μ1 drop of a 1.0% solution of capsaicin in an ethanol vehicle; the tactile stimulus was a polyester monofilament that exerted 7.5 g of force. Subjects attempted to localize the stimuli at 30-sec intervals for a period of 13.5 min, and rated the perceived intensity and quality of the chemogenic sensations. To avoid generating potentially confounding tactile sensations, localization attempts were made by pointing to the area of sensation with a focused light beam. The results showed that overall, chemical localization was inferior to tactile localization: The absolute error of localization averaged 2.5 cm for capsaicin compared to 1.4 cm for the monofilament. The experiment also revealed that chemical localization (1) varied significantly across arms, (2) exhibited a relatively strong bias toward the elbow, and (3) appeared to be unaffected by the perceived intensity of the sensation. The dominant sensation quality reported was itch. The results are discussed in the context of cutaneous localization in general and localization in the nociceptive system in particular.  相似文献   

8.
Focused ultrasound has been used to elicit cutaneous tactile, thermal, specific and nonspecific pain sensations, and also subcutaneous (deep) sensations which included tactile and some pain sensations (muscular and periosteal etc.). It has been found that somatic reception can be attributed to mechanoreception, that the same receptive structures are involved in the sensations of warmth and cold, and that ultrasound has a sensitizing action. Studies have been made of sensation differences from corporal and auricular acupuncture points, and from some chosen skin and subcutaneous points.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg. I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg. Translated from Neirofiziologiya, Vol. 24, No. 5, pp. 529–534, September–October, 1992.  相似文献   

9.
Tactile displays provoke tactile sensations by artificially stimulating tactile receptors. While many types of tactile displays have been developed, electrotactile displays that exploit electric stimulation can be designed to be thin, light, flexible and thus, wearable. However, the high voltages required to stimulate tactile receptors and limited varieties of possible sensations pose problems. In our previous work, we developed an electrotactile display using a micro-needle electrode array that can drastically reduce the required voltage by penetrating through the high-impedance stratum corneum painlessly, but displaying various tactile sensations was still a challenge. In this work, we demonstrate presentation of tactile sensation of different roughness to the subjects, which is enabled by the arrangement of the electrodes; the needle electrodes are on the fingertip and the ground electrode is on the fingernail. With this arrangement, the display can stimulate the tactile receptors that are located not only in the shallow regions of the finger but also those in the deep regions. It was experimentally revealed that the required voltage was further reduced compared to previous devices and that the roughness presented by the display was controlled by the pulse frequency and the switching time, or the stimulation flow rate. The proposed electrotactile display is readily applicable as a new wearable haptic device for advanced information communication technology.  相似文献   

10.
It has been suggested that incongruence between signals for motor intention and sensory input can cause pain and other sensory abnormalities. This claim is supported by reports that moving in an environment of induced sensorimotor conflict leads to elevated pain and sensory symptoms in those with certain painful conditions. Similar procedures can lead to reports of anomalous sensations in healthy volunteers too. In the present study, we used mirror visual feedback to investigate the effects of sensorimotor incongruence on responses to stimuli that arise from sources external to the body, in particular, touch. Incongruence between the sensory and motor signals for the right arm was manipulated by having the participants make symmetrical or asymmetrical movements while watching a reflection of their left arm in a parasagittal mirror, or the left hand surface of a similarly positioned opaque board. In contrast to our prediction, sensitivity to the presence of gaps in tactile stimulation of the right forearm was not reduced when participants made asymmetrical movements during mirror visual feedback, as compared to when they made symmetrical or asymmetrical movements with no visual feedback. Instead, sensitivity was reduced when participants made symmetrical movements during mirror visual feedback relative to the other three conditions. We suggest that small discrepancies between sensory and motor information, as they occur during mirror visual feedback with symmetrical movements, can impair tactile processing. In contrast, asymmetrical movements with mirror visual feedback may not impact tactile processing because the larger discrepancies between sensory and motor information may prevent the integration of these sources of information. These results contrast with previous reports of anomalous sensations during exposure to both low and high sensorimotor conflict, but are nevertheless in agreement with a forward model interpretation of perceptual modulations during goal directed movement.  相似文献   

11.
Movement is known to attenuate the perception of tactile stimuli delivered on the moving part of the body, and this gating diminishes the greater the distance from the moving part. However, does it influence the perception of sensations occurring spontaneously without external triggers? In Experiment 1, participants were asked to focus on one hand while moving or not moving their thumb, and thereafter to map and describe the spatial and qualitative attributes of sensations perceived over the remaining, motionless part of the hand. The results show that movement reduces the frequency, spatial extent, and intensity of sensations, but also participants’ confidence about their spatial characteristics. As expected, gating decreased the greater the distance from the moving thumb. Furthermore, gating was greater for distal than proximal segments of the hand, suggesting a hierarchical proximo-distal suppression. Experiment 2 ruled out the possibility that these effects were due to tactile sensations elicited by movement. Possible mechanisms of gating in the case of spontaneous sensations are discussed.  相似文献   

12.
Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual''s perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.  相似文献   

13.
Patients with spinal cord injury (SCI) may or may not develop central neuropathic pain despite having cord lesions of apparently the same site, extension and nature. The consequences of the cord lesion in the central nervous system and the mechanisms underlying pain are unclear. In this study, we examined sensory detection and pain thresholds above injury level in 17 SCI patients with central neuropathic pain, in 18 SCI patients without neuropathic pain, and in 20 control subjects without injury and pain. The SCI pain group had significantly higher cold and warm detection thresholds compared with the SCI pain free group and controls and higher tactile detection thresholds compared with the SCI pain free group. No difference in pain or pain tolerance thresholds was seen among pain and pain free SCI patients. These data suggest changes in somatosensory function in dermatomes rostral to the segmental injury level linked to the presence of central neuropathic pain in SCI patients. The results are discussed in relation to current concepts of pain inhibitory and facilitating systems.  相似文献   

14.
Patients with spinal cord injury (SCI) may or may not develop central neuropathic pain despite having cord lesions of apparently the same site, extension and nature. The consequences of the cord lesion in the central nervous system and the mechanisms underlying pain are unclear. In this study, we examined sensory detection and pain thresholds above injury level in 17 SCI patients with central neuropathic pain, in 18 SCI patients without neuropathic pain, and in 20 control subjects without injury and pain. The SCI pain group had significantly higher cold and warm detection thresholds compared with the SCI pain free group and controls and higher tactile detection thresholds compared with the SCI pain free group. No difference in pain or pain tolerance thresholds was seen among pain and pain free SCI patients. These data suggest changes in somatosensory function in dermatomes rostral to the segmental injury level linked to the presence of central neuropathic pain in SCI patients. The results are discussed in relation to current concepts of pain inhibitory and facilitating systems.  相似文献   

15.
It has not been established whether the smallest perceptible change in the intensity of vibrotactile stimuli depends on the somatosensory channel mediating the sensation. This study investigated intensity difference thresholds for vibration using contact conditions (different frequencies, magnitudes, contact areas, body locations) selected so that perception would be mediated by more than one psychophysical channel. It was hypothesized that difference thresholds mediated by the non-Pacinian I (NPI) channel and the Pacinian (P) channel would differ. Using two different contactors (1-mm diameter contactor with 1-mm gap to a fixed surround; 10-mm diameter contactor with 2-mm gap to the surround) vibration was applied to the thenar eminence and the volar forearm at two frequencies (10 and 125?Hz). The up-down-transformed-response method with a three-down-one-up rule provided absolute thresholds and also difference thresholds at various levels above the absolute thresholds of 12 subjects (i.e., sensation levels, SLs) selected to activate preferentially either single channels or multiple channels. Median difference thresholds varied from 0.20 (thenar eminence with 125-Hz vibration at 10?dB SL) to 0.58 (thenar eminence with 10-Hz vibration at 20?dB SL). Median difference thresholds tended to be lower for the P channel than the NPI channel. The NPII channel may have reduced difference thresholds with the smaller contactor at 125?Hz. It is concluded that there are large and systematic variations in difference thresholds associated with the frequency, the magnitude, the area of contact, and the location of contact with vibrotactile stimuli that cannot be explained without increased understanding of the perception of supra-threshold vibrotactile stimuli.  相似文献   

16.
There is a growing interest in body-ownership disruptions and their consequences for subjective experiences such as tactile sensations or pain. Here, we investigated the effect of the rubber hand illusion (RHI) on the perceived discomfort caused by cold stimulus applied to the real hand. The results showed reduced discomfort to cold reflected in behavioural and subjective measures. The stronger the illusion, the later the cold temperature became unpleasant and the less intense the experience was rated. We discuss the link between thermoception and body ownership as well as possible theoretical and methodological implications for studies on pain experience under RHI.  相似文献   

17.
The Marstock method of limits was used to obtain thresholds for detection of cooling, warming, cold pain and heat pain for 34 young adults, upon eight spatially matched sites on the left and right sides of the face, the right ventral forearm and the scalp. Male and female subjects were tested by both a male and a female experimenter. Neither the experimenter nor the gender of the subject individually influenced the thresholds. The thermal thresholds varied greatly across facial sites: sixfold and tenfold for cool and warmth, respectively, from the most sensitive sites on the vermilion to the least sensitive facial site, the preauricular skin. Warm thresholds were 68% higher than cool thresholds, on average, and 12% higher on the left compared to the right side of the face. The mean cold pain threshold increased from 21.0°C on the hairy upper lip to 17.8°C on the preauricular skin. Sites on the upper lip were also most sensitive to noxious heat with pain thresholds of 42–43°C. The scalp was notably insensitive to innocuous and noxious changes in temperature. For the sensations of nonpainful cool and warmth, the more sensitive a site, the less the estimates of the thresholds differed between subjects. In contrast, for heat pain, the more sensitive a site, the more the estimates differed between subjects. Subjects who were relatively more sensitive to cool tended to be relatively more sensitive to warmth. Subjects’ sensitivities to nonpainful cool and warmth were less predictive of their sensitivities to painful cold and heat, respectively. Short-term within-subject variability increased with the magnitude of the thresholds. The lower the threshold, the more similar were repeated measurements of it, within a 5–25?s period.  相似文献   

18.
The Marstock method of limits was used to obtain thresholds for detection of cooling, warming, cold pain and heat pain for 34 young adults, upon eight spatially matched sites on the left and right sides of the face, the right ventral forearm and the scalp. Male and female subjects were tested by both a male and a female experimenter. Neither the experimenter nor the gender of the subject individually influenced the thresholds. The thermal thresholds varied greatly across facial sites: sixfold and tenfold for cool and warmth, respectively, from the most sensitive sites on the vermilion to the least sensitive facial site, the preauricular skin. Warm thresholds were 68% higher than cool thresholds, on average, and 12% higher on the left compared to the right side of the face. The mean cold pain threshold increased from 21.0 degrees C on the hairy upper lip to 17.8 degrees C on the preauricular skin. Sites on the upper lip were also most sensitive to noxious heat with pain thresholds of 42-43 degrees C. The scalp was notably insensitive to innocuous and noxious changes in temperature. For the sensations of nonpainful cool and warmth, the more sensitive a site, the less the estimates of the thresholds differed between subjects. In contrast, for heat pain, the more sensitive a site, the more the estimates differed between subjects. Subjects who were relatively more sensitive to cool tended to be relatively more sensitive to warmth. Subjects' sensitivities to nonpainful cool and warmth were less predictive of their sensitivities to painful cold and heat, respectively. Short-term within-subject variability increased with the magnitude of the thresholds. The lower the threshold, the more similar were repeated measurements of it, within a 5-25 s period.  相似文献   

19.
Little research has been conducted on the somatosensory system of toothed whales and it remains uncertain how tactile sensitivity varies about their bodies. In this study, tactile sensitivity to high-frequency (250-Hz) displacement of the skin was quantified in three trained adult common bottlenose dolphins (Tursiops truncatus) using a vibratory device (tactor). The magnitude of skin displacement was controlled by varying the voltage to the tactor held against the skin surface with a constant force. Tactile thresholds were determined using an adaptive method of limits in which dolphins reported perception of the tactile stimulus by producing a whistle. Displacement thresholds ranged from 2.4 to 40 μm, with the greatest sensitivity found along the rostrum, melon, and blowhole. Sensitivity decreased caudally along the body, with the dorsal fin and tip of the fluke being the least sensitive locations tested. The results support hypotheses that the follicles on the dolphin rostrum are particularly important for perception. The reduction in tactile sensitivity at the appendages is consistent with their primary role in stabilization and locomotion compared to exploration or environmental sensing.  相似文献   

20.
When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号