首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着大量与人类疾病和药物治疗相关的单核苷酸多态性(Single-nucleotide polymorphism,SNP)的发现,出现了多种SNP分型检测的方法和技术。然而,大多数方法由于受限于检测灵敏度低或对检测设备和实验条件要求较高,不适宜于在一般实验条件下进行常规临床检测。通过建立一种基于连接酶-ELISA的SNP快速分型新方法,以非小细胞肺癌个体化治疗中,酪氨酸激酶抑制剂药物的生物标记基因—表皮生长因子受体基因(EGFR)为检测对象,对EGFR,c.2573T〉G(L858R),EGFR,c.2582T〉A(L861Q)和EGFR,c.2155 G〉T(G719C)3个SNP位点进行了突变检测。经过18~28个循环的PCR扩增,能够通过琼脂糖凝胶电泳和ELISA反应,根据电泳条带的有无和ELISA显色值清晰判断检测位点的基因型,并且能够从混合等位基因样本中检测出5%的突变型等位基因。结果表明,方法具有较高的特异性和灵敏度,适合于在常规实验条件下从不均一的样本中进行突变等位基因的检测。  相似文献   

2.
Gonadotropin-releasing hormone receptor (GnRHR) gene is considered a candidate gene for litter size due to its critical role in regulating the activities of hypothalamo-pituitary-gonadal axis which synthesizes and releases gonadotropins. This study was designed to identify mutations within the caprine GnRHR gene and investigate their association with litter size at various parities. Polymorphisms scanning and genotyping of GnRHR gene in West African Dwarf (WAD) goats (n?=?226) revealed three single nucleotide polymorphisms (SNPs), one mutation (g.-29T?>?G) was detected within 5′UTR region while two others (g.48G?>?A and g.209T?>?G) were identified in exon 1. Mutation at g.209T?>?G locus resulted in amino acid change from Methionine to Arginine at position 70 on the polypeptide residue. Based on heterozygosity and polymorphism information content (PIC), WAD goat population diversity at the SNP loci was moderate. Strong linkage disequilibrium (LD) (r2?>?0.98) existed among the detected mutations resulting in three observed haplotypes, two (T-G-T and G-A-G) had cumulative frequency of >?97%. The mutation within 5′UTR region of GnRHR gene (g.-29T?>?G) is novel, being reported in goats for the first time. Association analysis revealed a significant (p?<?0.05) association between allele G at g.-29T?>?G with higher mean litter size for homozygous (GG) mutant does compared with heterozygotes (GT) or homozygotes (TT), while the relationship between SNPs at the two loci detected in exon 1 and litter size was not significant.  相似文献   

3.
This study was designed to screen the crossbred pigs for SNPs in five candidate genes, associated with pork quality traits and to differentiate their genotypes by PCR–RFLP. The results indicated that genotypes of crossbred pigs were NN (90%) and Nn (10%) for RYR1; RR (83%) and QR (17%) for PRKAG3; HH (98%), Hh (1%) and hh (1%) for HFABP; DD (99%) and CD (1%) for MYF-5; and AG (57%), GG (26%) and AA (17%) for MC4R SNPs, respectively. Allelic frequencies for five SNPs {RYR1 (1843C>T), PRKAG3 (c.599G>A), HFABP (c.1322C>T), MYF-5 (c.1205A>C) and MC4R (c.1426A>G)} were 0.95 and 0.05 (N/n), 0.08 and 0.92 (Q/R), 0.99 and 0.01 (H/h), 0.00 and 1.00 (C/D) and 0.45 and 0.55 (A/G), respectively. The effect of RYR1 (1843C>T) SNP was significant on pH45 (P?<?0.05), pH24 (P?<?0.05) and protein % (P?<?0.05). The PRKAG3 (c.599G>A) and MC4R (c.1426A>G) SNP had significant association with dressing percentages. The results revealed that RYR1, PRKAG3 and MC4R SNPs may be used in marker associated selection for pork quality traits in crossbred pigs.  相似文献   

4.
L-ficolin (ficolin-2) is a complement-activating pattern-recognition lectin taking part in the innate immune response. Both its serum concentration and sugar binding capacity are influenced by single nucleotide polymorphisms (SNP) of the corresponding FCN2 gene. Cost-effective and simple procedures, based on polymerase chain reaction (PCR) or PCR-restriction fragment length polymorphism for an investigation of four FCN2 SNPs are proposed: ?64 A?>?C (rs7865453), ?4 A?>?G (rs17514136; both located in the promoter region), +6359 C?>?T (rs17549193), +6424 G?>?T (rs7851696; both in exon 8). Variant alleles of ?64 and +6424 (in strong linkage disequlibrium) are known to be associated with low L-ficolin level or activity. In contrast, variant alleles at positions ?4 and +6359 (also in strong linkage disequlibrium) correspond to higher values. Since several L-ficolin clinical associations have been reported, FCN2 genotyping seems to be a valuable tool for disease association studies.  相似文献   

5.
6.
Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of patients with non-small cell lung cancer (NSCLC). However, a large number of somatic mutations in such protein have been observed to cause drug resistance or sensitivity during pathological progression, limiting the application of reversible EGFR tyrosine kinase inhibitor therapy in NSCLC. In the current work, we describe an integration of in silico analysis and in vitro assay to profile six representative EGFR inhibitors against a panel of 71 observed somatic mutations in EGFR tyrosine kinase domain. In the procedure, the changes in interaction free energy of inhibitors with EGFR upon various mutations were calculated one by one using a rigorous computational scheme, which was pre-optimized based on a set of structure-solved, affinity-known samples to improve its performance in characterizing the EGFR-inhibitor system. This method was later demonstrated to be effective in inferring drug response to the classical L858R and G719S mutations that confer constitutive activation for the EGFR kinase. It is found that the Staurosporine, a natural product isolated from the bacterium Streptomyces staurosporeus, exhibits selective inhibitory activity on the T790M and T790M/L858R mutants. This finding was subsequently solidified by in vitro kinase assay experiment; the inhibitory IC50 values of Staurosporine against wild-type, T790M and T790M/L858R mutant EGFR were measured to be 937, 12 and 3 nM, respectively.  相似文献   

7.
A novel series of N-aryl-N′-pyrimidin-4-yl ureas has been optimized to afford potent and selective inhibitors of the EGFR L858R/T790M. The most representative compound 28 showed high activity against EGFR L858R/T790M kinase (IC50?=?4?nM) and 22-fold selectivity against wild type EGFR. Moreover, compound 28 potently inhibited EGFR L858R/T790M phosphorylation (IC50?=?41?nM) and cellular proliferation (IC50?=?37?nM) in the H1975 cell line, while being significantly less toxic to A431 cells. Further, compound 28 exhibited a great selectivity in a mini-panel of kinases.  相似文献   

8.
YK Bae  JY Sung  YN Kim  S Kim  KM Hong  HT Kim  MS Choi  JY Kwon  J Shim 《PloS one》2012,7(9):e42441
The epidermal growth factor receptor (EGFR) is a well-established target for cancer treatment. EGFR tyrosine kinase (TK) inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK), a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R]), or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R]) in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv) phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor) and U0126 (a MEK inhibitor) were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.  相似文献   

9.
Tyrosine kinase inhibitors for epidermal growth factor receptor (EGFR-TKIs) are used as molecular targeted therapy for non-small cell lung cancer (NSCLC) patients. The therapy is applied to the patients having EGFR-primary L858R mutation, but drug tolerance caused by EGFR-secondary mutation is occurred within one and half years. For the non-invasive detection of the EGFR-TKIs treatment positive patients by positron emission tomograpy (PET) imagaing, fluorine-18 labeled thienopyrimidine derivative, [18F]FTP2 was newly synthesized. EGFR inhibition assay, cell uptake study, and blocking study indicated [18F]FTP2 binds with high and selective affinity for EGFR with L858R mutation, and not with L858R/T790M dual mutations. On animal PET study using tumor bearing mice, H3255 cells expressing L858R mutated EGFR was more clearly visualized than H1975 cells expressing L858R/T790M dual mutated EGFR. [18F]FTP2 has potential for detecting NSCLC which is susceptible to EGFR-TKI treatment.  相似文献   

10.
TAE226, a bis-anilino pyrimidine compound, has been developed as an inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor-I receptor (IGF-IR). In this study, we investigated the effect of TAE226 on non-small-cell lung cancer (NSCLC), especially focusing on the EGFR mutational status. TAE226 was more effective against cells with mutant EGFR, including the T790M mutant, than against cells with wild-type one. TAE226 preferentially inhibited phospho-EGFR and its downstream signaling mediators in the cells with mutant EGFR than in those with wild-type one. Phosphorylation of FAK and IGF-IR was not inhibited at the concentration at which the proliferation of EGFR-mutant cells was inhibited. Results of the in vitro binding assay indicated significant differences in the affinity for TAE226 between the wild-type and L858R (or delE746_A750) mutant, and the reduced affinity of ATP to the L858R (or delE746_A750) mutant resulted in good responsiveness of the L858R (or delE746_A750) mutant cells to TAE226. Of interest, the L858R/T790M or delE746_A750/T790M mutant enhanced the binding affinity for TAE226 compared with the L858R or delE746_A750 mutant, resulting in the effectiveness of TAE226 against T790M mutant cells despite the T790M mutation restoring the ATP affinity for the mutant EGFR close to that for the wild-type. TAE226 also showed higher affinity of about 15-fold for the L858R/T790M mutant than for the wild-type one by kinetic interaction analysis. The anti-tumor effect against EGFR-mutant tumors including T790M mutation was confirmed in mouse models without any significant toxicity. In summary, we showed that TAE226 inhibited the activation of mutant EGFR and exhibited anti-proliferative activity against NSCLCs carrying EGFR mutations, including T790M mutation.  相似文献   

11.
Abstract

The p22phox is a critical component of vascular NADPH oxidases and is encoded by the CYBA gene. It was shown that functionally relevant polymorphisms of the CYBA gene ?930A?>?G, ?852C?>?G, ?675A?>?T, ?536C?>?T, 214C?>?T (previously described as 242C?>?T), *24A?>?G (previously described as 640A?>?G), and *49A?>?G modulate generation of reactive oxygen species (ROS). To analyse whether the CYBA gene polymorphisms ?852C?>?G, ?675A?>?T, and ?536C?>?T were associated with coronary artery disease (CAD), and to designate haplotype blocks. Four hundred and ninety subjects: 245 patients with CAD and 245 age and sex-matched controls. The polymorphisms were genotyped using the PCR-RFLP method and the TagMan® Pre-designed SNP Genotyping Assay. The analysed polymorphisms do not form haplotype blocks. Case–control study revealed that the ?930?G/-675T and ?930G/*49G diplotypes were a CAD risk factor. The 675T/*49G diplotype can modulate CAD risk in women. The protective effect reducing CAD risk in women was related to the ?930A/?675T and ?930A/*49A diplotypes. Carrier state of the ?852C allele (?852C?>?G) was associated with multivessel stenosis while the CC genotype of the ?536C?>?T polymorphism was more frequent in patients with peripheral artery disease. Hypercholesterolemic, cigarette smokers had an increased risk of CAD, especially C???852 allele (?852C?>?G) carriers (SIM?=?3.54; odds ratios (OR)?=?10.01, p?<?0.000). The CYBA gene polymorphisms modulate the risk of CAD but do not form a haplotype blocks.  相似文献   

12.
AIM: To identify non-quinazoline kinase inhibitors effective against drug resistant mutants of epidermal growth factor receptor (EGFR).METHODS: A kinase inhibitor library was subjected to screening for specific inhibition pertaining to the in vitro kinase activation of EGFR with the gatekeeper mutation T790M, which is resistant to small molecular weight tyrosine kinase inhibitors (TKIs) for EGFR in non-small cell lung cancers (NSCLCs). This inhibitory effect was confirmed by measuring autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells, an NSCLC cell line harboring the gatekeeper mutation. The effects of a candidate compound, Janus kinase 3 (JAK3) inhibitor VI, on cell proliferation were evaluated using the MTT assay and were compared between T790M-positive and -negative lung cancer cell lines. JAK3 inhibitor VI was modeled into the ATP-binding pocket of EGFR T790M/L858R. Potential physical interactions between the compound and kinase domains of wild-type (WT) or mutant EGFRs or JAK3 were estimated by calculating binding energy. The gatekeeper residues of EGFRs and JAKs were aligned to discuss the similarities among EGFR T790M and JAKs.RESULTS: We found that JAK3 inhibitor VI, a known inhibitor for JAK3 tyrosine kinase, selectively inhibits EGFR T790M/L858R, but has weaker inhibitory effects on the WT EGFR in vitro. JAK3 inhibitor VI also specifically reduced autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells upon EGF stimulation, but did not show the inhibitory effect on WT EGFR in A431 cells. Furthermore, JAK3 inhibitor VI suppressed the proliferation of NCI-H1975 cells, but showed limited inhibitory effects on the WT EGFR-expressing cell lines A431 and A549. A docking simulation between JAK3 inhibitor VI and the ATP-binding pocket of EGFR T790M/L858R predicted a potential binding status with hydrogen bonds. Estimated binding energy of JAK3 inhibitor VI to EGFR T790M/L858R was more stable than its binding energy to the WT EGFR. Amino acid sequence alignments revealed that the gatekeeper residues of JAK family kinases are methionine in WT, similar to EGFR T790M, suggesting that TKIs for JAKs may also be effective for EGFR T790M.CONCLUSION: Our findings demonstrate that JAK3 inhibitor VI is a gatekeeper mutant selective TKI and offer a strategy to search for new EGFR T790M inhibitors.  相似文献   

13.
The efficacy of EGFR inhibitors is frequently affected by acquired resistance. EGFR19D/T790M/C797S mutation is one of the primary reasons for the emergence of resistance after treatment with the third-generation EGFR inhibitors such as AZD9291, CO1686 and Olmutinib. To overcome the resistance mutation 19D/T790M/C797S, we designed and prepared a series of indole derivatives with the terminal hydroxyl of alkyl chain to increase extra interaction with the Asp855 in the conservative DFG site. Activity evaluation, structure-activity relationship and docking analysis were also carried out. Among them, compound 12e displayed significant inhibitory activity against EGFR19D/T790M/C797S (IC50 = 15.3 nM) and good selectivity over EGFR WT (IC50 > 1000 nM), L858R/T790M (IC50, 156.6 nM) and L858R/T790M/C797S (IC50, 218.3 nM) respectively. Furthermore, 12e exhibited good growth inhibition activity, induced G1 phase cell cycle arrest and apoptosis in BaF3/EGFR19D/T790M/C797S cells by suppressing EGFR phosphorylation signaling pathway. In all, our study might provide a novel structural design method and lay the solid foundation for the development of the 4th generation EGFR19D/T790M/C797S inhibitors.  相似文献   

14.
A series of thirty two anilinopyrimidines derived from WZ4002 has been synthesized and evaluated for percentage inhibition of six different EGFR kinases using LanthaScreen binding assay method (EGFR d746 – 750) or Z’LYTE assay method (EGFR-WT, EGFR d746 – 750, EGFR T790M, EGFR T790M L858R, EGFR C797S and EGFR T790M L858R C797S). Ortho-hydroxyacetamide 10 exhibited complete inhibition of all the six kinases at 10 µM. Against the triple mutant, EGFR T790M C797S L858R, compounds 912 exhibited complete inhibition at 10 µM and nearly complete inhibition at 1 µM. The target compounds were also evaluated using the MTT assay to determine their cytotoxic activity against human non-small cell lung cancer cells (PC9, PC9GR and H460) and mouse leukemic cells (Ba/F3 WT and Ba/F3T 3151). Overall, 7, 912, 30 and 31 were found to be the most potent compounds across all five cell lines.  相似文献   

15.
In present study, we described the synthesis and biological evaluation of a new class of EGFR inhibitors containing 2,9-disubstituted 8-phenylthio/phenylsulfinyl-9H-purine scaffold. Thirty-one compounds were synthesized. Among them, compound C9 displayed the IC50 of 29.4?nM against HCC827 cell line and 1.9?nM against EGFRL858R. Compound C12 showed moderate inhibitory activity against EGFRL858R/T790M/C797S (IC50?=?114?nM). Western bolt assay suggested that compound C9 significantly inhibited EGFR phosphorylation. In vivo test, compound C9 remarkably exhibited inhibitory effect on tumor growth at 5.0?mg/kg by oral administration in established nude mouse HCC827 xenograft model. These results indicate that the 2,9-disubstituted 8-phenylsulfinyl/phenylsulfinyl-9H-purine derivatives can act as potent EGFR(L858R) inhibitors and effective anticancer agents. Additionally, optimization of compound C12 may result in discovering the fourth-generation EGFR-TKIs.  相似文献   

16.
Abstract

Cardiotoxicity is one amongst the adverse effect of Osimertinib delineate in clinical trials and related to escalating doses. To triumph over the drawbacks of Osimertinib, in this study, we tend to delineate the design, synthesis, in vitro biological analysis of a series of novel reversible selective T790M inhibitors with minimal cardiotoxicity. Amongst the virtually sorted compounds; compound 18 and 74 have been located to be the foremost active compounds of the series with IC50 value of 0.88, 0.92?μM in cellular assay and 0.56, 0.62?μM in enzymatic assay, against double mutant L858R/T790M EGFR. Additionally, they showed much less affinity toward wild-type (WT)-EGFR with minimal cardiotoxicity.  相似文献   

17.
The virulence factor internalin A (InlA) facilitates the uptake of Listeria monocytogenes by epithelial cells that express the human isoform of E-cadherin. Previous studies identified naturally occurring premature stop codon (PMSC) mutations in inlA and demonstrated that these mutations are responsible for virulence attenuation. We assembled >1,700 L. monocytogenes isolates from diverse sources representing 90 EcoRI ribotypes. A subset of this isolate collection was selected based on ribotype frequency and characterized by a Caco-2 cell invasion assay. The sequencing of inlA genes from isolates with attenuated invasion capacities revealed three novel inlA PMSCs which had not been identified previously among U.S. isolates. Since ribotypes include isolates with and without inlA PMSCs, we developed a multiplex single-nucleotide polymorphism (SNP) genotyping assay to detect isolates with virulence-attenuating PMSC mutations in inlA. The SNP genotyping assay detects all inlA PMSC mutations that have been reported worldwide and verified in this study to date by the extension of unlabeled primers with fluorescently labeled dideoxynucleoside triphosphates. We implemented the SNP genotyping assay to characterize human clinical and food isolates representing common ribotypes associated with novel inlA PMSC mutations. PMSCs in inlA were significantly (ribotypes DUP-1039C and DUP-1045B; P < 0.001) or marginally (ribotype DUP-1062D; P = 0.11) more common among food isolates than human clinical isolates. SNP genotyping revealed a fourth novel PMSC mutation among U.S. L. monocytogenes isolates, which was observed previously among isolates from France and Portugal. This SNP genotyping assay may be implemented by regulatory agencies and the food industry to differentiate L. monocytogenes isolates carrying virulence-attenuating PMSC mutations in inlA from strains representing the most significant health risk.  相似文献   

18.
Abstract

The L858R mutation in EGFR is particularly responsive to small tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib. This efficacy decreases due to drug resistance conferred by a second mutation, T790M, which subsequently produces a double mutant, L858R/T790M. Although this resistance was initially attributed to steric blocking by the T790M mutation, experimental studies have demonstrated that differences in the binding affinities of TKIs to T790M and L858R/T790M mutants are more a result of the increased sensitivity of these mutants to ATP than to a decrease in the affinity to TKIs. Regrettably, detailed information at the atomic level on the origins of the increased binding affinity of mutants for ATP is lacking. In this study, we have combined structural data and molecular dynamics simulations with the MMGBSA approach to determine how the L858R, T790M and L858R/T790 mutations impact the binding mechanism of ATP with respect to wild-type EGFR. Structural and energetic analyses provided novel information that helps to explain the increased affinity of ATP to T790M and L858R/T790 mutants with respect to L858R and wild-type systems. In addition, it was observed that dimerization of the wild-type and mutant systems exerts dissimilar effects on the ATP binding affinity characteristic of negative cooperativity.

Communicated by Ramaswamy H. Sarma  相似文献   

19.

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T?>?G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T?>?G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号