首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The composition and oxidative capacity of brown adipose tissue (BAT) were investigated in Djungarian hamsters kept under natural photoperiod, either indoors at neutralT a (23°C) or under outdoor conditions. BAT comprises up to 5% of the body weight in summer/indoor hamster, with lipid representing 86% of the total tissue mass. Tissue mass and thermogenic capacity are inversely related during seasonal adaptation: 30% decrease of total DNA, accompanied by extensive lipid depletion, reduces the amount of BAT by almost 60% during acclimatization from summer/indoor to winter/outdoor conditions. Mitochondrial protein in BAT is increased by a factor of 2.6 concomitantly, and by a factor of 4 when related to body weight (body weight reduction 36%).Cytochrome oxidase activity in different brown fat deposits varies by up to 150% in summer/indoor hamsters; depending on the fat pad, the enzyme activity is increased 200%–700% during adaptation to winter/outdoor conditions.Natural photoperiod is decisive in determining the seasonal adaptation of DNA content in BAT and of body weight. Short photoperiod alone may lead to depletion of lipid content of BAT and thus decrease the tissue mass practically to the lowest seasonal level, even though both parameters may be also influenced byT a. One third of the maximum adaptive increase of tissue mitochondria may be attributed to seasonal changes in photoperiod and up to two thirds toT a. Photoperiod establishes a fixed fundament of slow-reacting functional adaptation of BAT, whereas the effect of decreasedT a depends on the rate and duration of cold influence.Abbreviations BAT brown adipose tissue - NST nonshivering thermogenesis - T a ambient temperature  相似文献   

2.
Seasonal variation in the plasma concentration of lutropin (LH), follitropin (FSH), prolactin (PRL), thyroxine (T4), triiodothyronine (T3) and corticosterone (B) were measured in the pigeon by RIA methods. Pigeons were maintained indoors under constant ambient temperature (Ta) and simulated natural daylight (LD), 12:12 L:D regimens or outdoors exposed to seasonal variations in temperature and photoperiod at Oulu, Finland. Only slight changes of gonadotropins (LH, FSH) were observed throughout the year, without any clear photosensitive or photorefractory period. In the indoor (natural LD) group, LH stayed elevated from May until October. Interdependence between the circannual hormonal fluctuation and photoperiod could not be shown, although the amplitude of FSH, T4 and T3 fluctuation of pigeons maintained in laboratory conditions were greater than that of natural LD and outdoor pigeons, whose circannual rhythms were similar. A high concentration of plasma PRL in autumn and the peak value of B in winter for all groups are thought to be correlated to lipid metabolism. Two peaks, the first in winter and the second in autumn, observed in T4 and T3 hormone profiles, may be due to molting of the pigeons.  相似文献   

3.
The seasonal variations in serotonin immunoreactivity and ultrastructure of the secretory rudimentary photoreceptor cells (SRPC) were studied in the pineal organ of the Japanese grass lizard, Takydromus tachydromoides in relation to the environmental temperature. Our results clearly demonstrated that serotonin immunoreactivity in the lizard pineal organ displayed seasonal variations under an artificial photoperiod of LD 12:12 and natural temperature in the laboratory. Immunoreactivity became intense with increase in temperature from spring to summer, showing the strongest reaction in the summer, and subsequently became weak with the drop in temperature to winter. Also, the SRPC of the lizard showed distinct seasonal variations in number and size of the dense-cored vesicles correlated to the serotonin immunoreactivity. In contrast, the changes in size of the lysosomes and nucleoli of the SRPC were inversely proportional to that of the dense-cored vesicles. Furthermore, the lysosomes ingested some dense-cored vesicles after the autumn, and they coalesced to form huge autophagosomes or residual bodies during the winter. The present study provided serotonin-immunohistochemical and ultrastructural evidence for seasonal variations in the secretory activity of the lizard pineal organ in accordance with changes in the environmental temperature. However, there may be few functional relationships between the pineal gland and the reproductive organs in the male Japanese lizard in relation to environmental temperature.  相似文献   

4.
Seasonal changes in pineal function are well coordinated with seasonal reproductive activity of tropical birds. Further, immunomodulatory property of melatonin is well documented in seasonally breeding animals. Present study elucidates the interaction of peripheral melatonin with seasonal pattern of immunity and reproduction in Indian tropical male bird Perdicula asiatica. Significant seasonal changes were noted in pineal, testicular and immune function(s) of this avian species. Maximum pineal activity along with high immune status was noted during winter month while maximum testicular activity with low immune status was noted in summer. During summer month's long photoperiod suppressed pineal activity and high circulating testosterone suppressed immune parameters, while in winter short photoperiod elevated pineal activity and high circulating melatonin maintained high immune status and suppressed gonadal activity. Therefore, seasonal levels of melatonin act like a major temporal synchronizer to maintain not only the seasonal reproduction but also immune adaptability of this avian species.  相似文献   

5.
Abstract. 1. Adult male and female Nebria salina were collected in summer, when in reproductive diapause, and subjected to three different photoperiod regimes, LD 18:6 h, LD 12:12 h, and LD 6:18 h, to assess the role of light regimes on sexual development. 2. Two alternative hypotheses were tested: (i) development rates increase in response to time restriction and (ii) development rate is at a maximum on the day length approximating to that in the field during reproduction. 3. Gonad development was assessed after 1 and 2 months' exposure to the experimental day lengths. In female N. salina, photoperiod and length of time of exposure both influenced reproductive development. Females required at least 2 months' exposure to photoperiods of ≤ LD 12:12 h to mature. Development of the ovary did not take place on LD 18:6 h, irrespective of the length of exposure. Sexual development occurred in all the males after 2 months, irrespective of photoperiod. 4. At the end of the study the activity of the remaining beetles was measured and compared. Significantly higher activity levels were measured in periods of darkness, and consequently beetles exposed to the two shorter day lengths were found to be more active than those kept on the longest photoperiod. Comparing the 3‐h period 06.00 – 09.00, the last 3 h of darkness for all three regimes, activity was significantly higher on LD 12:12 h and LD 6:18 h than on the LD 18:6 h regime. 5. In order to place the experimental studies in context with the life cycle under natural conditions, pitfall traps were used to compare the seasonal activity of N. salina in the field.  相似文献   

6.
The locomotor activity of Nereis virens Sars associated with food prospecting was investigated in response to photoperiod and season using an actograph. Experimental animals which had been reared under natural photoperiods were exposed to two constant photoperiodic treatments, LD 16:8 and LD 8:16, in both the autumn and winter and in the absence of tidal entrainment. Autocorrelation analysis of rhythmicity showed that during the autumn, animals under the LD 16:8 photoperiod displayed a strong nocturnal rhythm of activity, whereas animals under the LD 8:16 photoperiod showed only a weak nocturnal activity rhythm. This is believed to represent an autumn feeding cessation that is triggered when the animals pass through a critical photoperiod LD(crit) <12:>12. Later in the winter, however, animals exposed to both photoperiodic treatments showed strong rhythms of foraging activity irrespective of the imposed photoperiod. It is suggested that the autumn cessation may maximize the fitness of N. virens, a spring-breeding semelparous organism, by reducing risk during gamete maturation, while spontaneous resurgence of activity after the winter solstice permits animals that are not physiologically competent to spawn to accrue further metabolic reserves. This response is believed to be initiated by a seasonal (possibly circannual) endogenous oscillator or interval timer.  相似文献   

7.
The diurnal variations of several plasma hormones and free fatty acids (FFA) were studied during periods in summer and winter for pigeons reared either outdoors or indoors. The latter were subjected to constant temperature and naturally varying photoperiods. A significant seasonal variation in the mean daily levels of triiodothyronine (T3), thyroxine (T4), corticosterone (B), lutropin (LH) and FFA was seen in the outdoor birds and in the T4 and B levels of indoor birds. The diurnal variation of hormone levels was generally more pronounced in winter in both groups. Cold ambient temperature significantly decreased the plasma LH level and potentiated the increasing effect of short photoperiod on plasma B level. Diurnal variation of plasma FFA level seems to be under the control of photoperiod, without any effects due to the ambient temperature. No significant correlation was found between FFA and GH concentrations.  相似文献   

8.
The aim of the study was to differentiate the impact of lighting conditions and feeding times on the regulation of lipid metabolism of goats under different photoperiods throughout the year. Seven Finnish landrace goats were kept under artificial lighting that simulated the annual changes of photoperiod at 60 degrees N (the longest light period 18 h, the shortest 6 h). Ambient temperature and feeding regime were kept constant. Blood samples were collected six times a year at 2-h intervals for 2 days, first in light/dark (LD) conditions and then after 3 days in constant darkness (DD). Significant daily variations were detected in the concentrations of plasma free fatty acids (FFA) and glycerol throughout the year. The nocturnal decrease and morning rise of FFA levels were related to the photoperiod, while the trough levels of glycerol were associated with the concentrate meal times. In DD conditions, FFA and glycerol rhythms were unstable. A significant seasonal variation was detected in the overall FFA and glycerol levels suggesting decreased lipogenesis in winter, increased lipolysis in spring and high lipogenesis in summer and fall. There was no significant daily rhythm in serum leptin levels, nor did the profiles in LD and DD conditions differ. The leptin level was slightly lower in early fall than in the other seasons, paralleling a small decrease of body mass in the goats after the grazing season. The daily or annual variations of FFA and glycerol levels were not clearly related to leptin concentrations. The results suggest that lipid metabolism of goats is regulated by light even in constant temperature and feeding conditions; however, no significant contribution of leptin levels could be shown.  相似文献   

9.
The aim of the study was to find out whether there is a daily rhythm in goat serum cortisol concentrations, whether the concentration profiles differ between normal light:dark and constant dark conditions, and whether any seasonal variations might be detected in daily cortisol secretion patterns. Seven Finnish landrace goats were kept at indoor temperature (18-23°C) under artficial lighting that approximately simulated the annual changes of daylength at 60°N. Blood samples were collected for cortisol measurements by radioimmunoassay at 2h intervals during six times of the year: winter (light:dark 6:18h), early spring (10:14h), late spring (14:10h), summer (18:6h), early fall (14:10h), and late fall (10:14h). Cortisol profiles were determined for two consecutive days, first in light:dark (LD) conditions and then in continuous darkness (DD). There was no significant daily rhythm in serum cortisol levels in any time of the year, nor did the profiles in LD and DD conditions show any differences. A significant seasonal variation was, however, detected among the overall cortisol levels. In winter, the concentrations were higher than in any other season, and from early spring to summer they were at their lowest. Under equal photoperiods, the cortisol levels were higher in fall than spring. The difference between winter and summer was confirmed in the following year in LD conditions. There was no correlation between the serum cortisol and progesterone levels. The results suggest that the possible circadian variation of cortisol secretion in goats is completely masked by external factors, and the lighting conditions do not have immediate effects on the daily secretion patterns. The seasonal variation in the overall cortisol levels is most probably related to the changes in photoperiod, because other conditions were relatively constant during the experiment.  相似文献   

10.
Immature male and female and maturing male Arctic charr Salvelinus alpinus were held at constant temperature (4° C) under either simulated natural photoperiod (nLD) or constant photoperiod (12:12 LD) conditions, and feed intake and growth were monitored at monthly intervals over 13 months. Food was supplied in excess during a 5-h period each day, and daily consumption was determined using X-radiography. Food consumption and growth of both immature and maturing fish showed distinct seasonal cycles irrespective of photoperiod treatment. Feed intake and growth rates were highest in mid-summer and lowest in autumn. The fact that seasonal cycles persisted under constant photoperiod (12:12 LD) and temperature conditions suggests that circannual rhythms of food consumption and growth exist in the absence of seasonal changes in these environmental cues. The data support the view that seasonal changes in food consumption and growth in the Arctic charr are driven by endogenous rhythms. Reductions in feeding and growth in autumn occurred about 1 month earlier in the maturing males than in the immature fish. Males that matured under the 12:12 LD regime displayed a growth cycle that was delayed in comparison with that shown by the maturing males held under nLD.  相似文献   

11.
Abundances of the erect, blade phase of Endarachne binghamiae J. Ag. (Scytosiphonales, Phaeophyta) varied seasonally at a southern California rocky intertidal site. Blade cover and density were much greater in the fall through early spring; blades were mostly absent from quadrats during the summer. Blade abundances were negatively correlated with both seasonal variations in seawater temperature and photoperiod. Laboratory culture studies failed to provide evidence for sexual reproduction. The life history appears to be of the “direct” type with plurangia-produced zooids germinating into crustose disks. Most disks developed erect blade clusters under spring/fall (17° C) and winter (13° C) temperatures over the range of natural photoperiods employed (14:10, 12:12, 10:14 h LD). In contrast, cultures held under the summer temperature (21° C) produced almost entirely crustose growths regardless of photoperiod. Similar results were obtained for cultures grown at 100 and 200 μE · m?2· s?1. E. binghamiae blades were fertile throughout the year and produced viable zooids indicating that reproductive seasonality did not influence the seasonal pattern of blade abundance. Culture and field studies suggest that the initiation of new erect blade clusters from crustose disks is confined to the cooler months of the year (winter and spring). The summer reduction or absence of E. binghamiae blades appears to be due to increased mortality rates and temperature constraints on the development of new erect bladed thalli. Hypothetical causes of mortality are desiccation stress, sand burial, increased grazing activity and a genetically-based short life span.  相似文献   

12.
The temperate aquatic environment is affected by two primary components of season, temperature and photoperiod, during the annual cycle. Many organisms respond to seasonal change physiologically, behaviorally or both. The aim of this study was to investigate the effect of seasonality on cortisol, hematological and innate immune parameters in European sea bass reared under traditional semi-intensive aquaculture. Sea bass (Dicentrarchus labrax) were reared in an outdoor pond and serum cortisol, hematocrit, leucocrit, serum lysozyme activity and total glutathione were bimonthly monitored over a 14-months period. The effect of seasonality was observed for all parameters carried out, with generally higher values in summer and lower in winter. These results could improve the understanding of the influence of seasonal cues on the immune system and hematological parameters in fish in order to optimize the husbandry practices.  相似文献   

13.
1. Group activity rhythms of Panulirus argus in the laboratory, as measured by constant recording actographs, are described under natural photoperiod and constant temperature for a seven‐month period. Adjunct behavioral observations are reported.

2. The data indicate seasonally varying daily rhythms are present in Panulirus argus. Starting times and duration of activity periods follow a seasonal trend ‐ the animals becoming active earlier, and maintaining their activity longer, during the spring and early summer months.

3. It is suggested that the evening's high level of activity is associated with increased social interaction and that photoperiod is an important factor in the daily and seasonal components Of the rhythm.  相似文献   

14.
Abundance of Pithophora oedogonia akinetes displayed seasonal changes, being greatest in winter and lowest in summer. Akinete abundance showed significant (P < 0.001) negative correlations with photoperiod(r = -0.53) and water temperature (r= -0.75) during the period February 1978 through June 1979. Experiments in which akinete germination was studied in response to manipulations of nutrients (NO3-N and PO4-P), photoperiod and temperature indicated that temperature was the primary factor regulating the timing of the vernal flush of akinete germination observed in Surrey Lake.  相似文献   

15.
The KiSS-1 gene encodes kisspeptin, the endogenous ligand of the G-protein-coupled receptor GPR54. Recent data indicate that the KiSS-1/GPR54 system is critical for the regulation of reproduction and is required for puberty onset. In seasonal breeders, reproduction is tightly controlled by photoperiod (i.e., day length). The Syrian hamster is a seasonal model in which reproductive activity is promoted by long summer days (LD) and inhibited by short winter days (SD). Using in situ hybridization and immunohistochemistry, we show that KiSS-1 is expressed in the arcuate nucleus of LD hamsters. Importantly, the KiSS-1 mRNA level was lower in SD animals but not in SD-refractory animals, which spontaneously reactivated their sexual activity after several months in SD. These changes of expression are not secondary to the photoperiodic variations of gonadal steroids. In contrast, melatonin appears to be necessary for these seasonal changes because pineal-gland ablation prevented the SD-induced downregulation of KiSS-1 expression. Remarkably, a chronic administration of kisspeptin-10 restored the testicular activity of SD hamsters despite persisting photoinhibitory conditions. Overall, these findings are consistent with a role of KiSS-1/GPR54 in the seasonal control of reproduction. We propose that photoperiod, via melatonin, modulates KiSS-1 signaling to drive the reproductive axis.  相似文献   

16.
Wu SH  Yang D  Lai XT  Xue FS 《Journal of insect physiology》2006,52(11-12):1095-1104
The seasonal life cycle of the zygaenid moth, Pseudopidorus fasciata is complicated by two different developmental arrests: a winter diapause as a fourth larval instar and a summer diapause as a prepupa in a cocoon. Both larval diapause induction and termination are under photoperiodic control. Short days induce larval diapause with a critical daylength of 13.5h and long days terminate diapause with a critical daylength of 14h. In the present study photoperiodic control of summer diapause was investigated in Pseudopidorus fasciata. Under long photoperiods ranging from LD 14:10 to LD 18:6, only part of the population entered summer diapause, the rest continued to develop. The lowest number of prepupae entered diapause at LD 14:10, followed by LD 16:8 and LD 17:7. The highest incidence of diapause occurred with photoperiods of LD 15:9 and LD 18:6. By transferring the diapausing prepupae induced by various long photoperiods (LD 14:10, LD 15:9, LD 16:8, LD 17:7, LD 18:6) to LD 13:11, 25 degrees C, the duration of diapause induced by LD 14:10 was significantly shorter than those induced by longer photoperiods. By keeping aestivating prepupae induced by LD 15:9, 28 degrees C or by natural conditions at short photoperiods (LD 11:13 and LD 13:11) and at a long photoperiod (LD 15:9), the duration of diapause at LD 15:9 was more than twice as long as than those at LD 11:13 and LD 13:11. Moreover, adult emergence was highly dispersed with a high mortality at LD 15:9 but was synchronized with low mortality at LD 11:13 and LD 13:11. When the naturally induced aestivating prepupae were kept under natural conditions, the early aestivating prepupae formed in May exhibited a long duration of diapause (mean 126 days), whereas the later-aestivating prepupae formed in July exhibited a short duration of diapause (mean 69 days). These results indicate that aestivating prepupae require short or shortening photoperiod to terminate their diapause successfully. By transferring naturally induced aestivating prepupae to 25, 28 and 30 degrees C, the duration of diapause at the high temperature of 30 degrees C was significantly longer than those at 25 and 28 degrees C, suggesting that high temperature during summer also plays an important role in the maintenance of summer diapause in Pseudopidorus fasciata. All results reveal that summer diapause can serve as a "bet hedging" against unpredictable risks due to fluctuating environments or as a feedback mechanism to synchronize the period of autumn emergence.  相似文献   

17.
Nonshivering thermogenesis (NST) is a main source of heat for many small mammals. It undergoes seasonal changes, being the highest in winter and the lowest in summer. Such acclimatization can ensure winter survival for species living in moderate or cold climates. Nevertheless, not only seasonal, but also daily changes in the capacity for NST seem to be of great importance. In this study, the effects of season and time of day on the temperature of brown adipose tissue (T(BAT)), preferred ambient temperature (PT(a)) and activity after noradrenaline (NA) injections in golden hamsters (Mesocricetus auratus) housed under semi-natural conditions were investigated. Animals were kept in outdoor enclosures and experienced natural changes in both, photoperiod and ambient temperature (T(a)). NA-induced hyperthermia was the largest during autumn (mean increase in T(BAT) by 0.74+/-0.04 degrees C), while during summer increase in T(BAT) was similar to that recorded in control (saline-injected) animals (0.16+/-0.05 degrees C and 0.24+/-0.04 degrees C, respectively). In spring hyperthermia was intermediary (0.57+/-0.05 degrees C). Daily variations in the response to NA depended on the season. In summer, the largest increase in T(BAT) (0.45+/-0.1 degrees C) was recorded during the first part of the day, while in autumn-in the middle of the day and night (1.1+/-0.1 degrees C and 0.9+/-0.1 degrees C, respectively). In spring, all NA injections induced large increase in T(BAT) except for the injection in the middle of the night. The largest decrease in PT(a) after NA administration was recorded in autumn (mean decrease by 1.5+/-0.3 degrees C). Both, seasonal and daily changes in the capacity for NST reflect different demands for heat dependently on the time of the year and time of the day. It can be concluded that although long history of breeding in captivity, golden hamsters preserved ability to survive in natural environment.  相似文献   

18.
Under natural environmental conditions, sea bass feeding rhythms are nocturnal in winter and diurnal during the rest of the year. Increasing water temperature from 22 to 28°C or decreasing it to 16°C had little effect on the dual feeding behaviour of sea bass. An 8:16 LD photoperiod with low temperature or 16:8 LD with high temperature also failed to change the diurnal/ nocturnal behaviour of sea bass. In conclusion, sea bass feeding rhythms did not follow passively the manipulated environmental factors simulating summer and winter conditions in the laboratory, which suggests an endogenous circannual control of the seasonal phase inversion.  相似文献   

19.
Plasma levels of lactate: NADH oxidoreductase (LD) and the proportions of five major isoenzymes were estimated in samples taken in January, March, June, July and November from Hereford cows kept under range conditions. Seasonal changes were observed in both total LD and the proportions of the isoenzymes. Levels of total LD and all isoenzymes were low in winter and high in summer. Proportions of LD4 and LD5, the electrophoretically slow isoenzymes which predominate in muscle, increased in summer at the expense of LD1, the fast isoenzyme which predominates in liver and erythrocytes. LD1 was increased in November, at the time when other isoenzyme levels were decreasing from summer high levels. The seasonal changes observed in plasma LD were attributed to changes in diet and/or water supply and activity of the range cows.  相似文献   

20.
A photoperiod-related seasonal rhythm in active period (scotophase), metabolic rate and core temperature was documented for animals held at 21.0 +/- 0.1 degrees C ambient; animals that were habituated to long nights (10:14LD) had a greater metabolic reserve than those held in summer photoperiods (14:10LD). While relative weights of gonads and sex accessory tissues of mice show typical "winter" regression, interscapular brown adipose tissue mass was unaffected by photoperiod; moreover, IBAT beta adrenergic responses under "winter" photoperiods did not differ from "summer" photoperiods in the absence of cold stimulus. Thermogenic efficiency, measured as the increment of active temperature level achieved per increment of active period metabolic effort, was highest for animals exposed to short photoperiods. Thermal conductance was reduced in animals exposed to short (10:14LD) photoperiods. Heat conservation and thermogenic response capacity was enhanced by melatonin treatment and short photoperiod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号