首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The level of intracellular diadenosine 5′, 5′′′-P1,P4-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70–80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA.  相似文献   

2.
A coupled enzymatic assay for diadenosine 5′, 5?-P1, P4-tetraphosphate(Ap4A) is described. Luciferin-luciferase produces light by consuming the ATP that is liberated by the action of snake venom phosphodiesterase on Ap4A. The procedure is linear with Ap4A levels ranging from 0.02 to 2 pmol. The pool size of Ap4A in human leukemic cells was determined by acid extraction of the cells followed by initial fractionation of the extract on a DEAE-cellulose column and application of the phosphodiesterase luciferin-luciferase coupled assay. The method was also used to follow the purification of a diadenosine tetraphosphate-degrading enzyme (diadenosine tetraphosphatase, Ap4Aase) from mouse ascites tumor cells. The partially purified enzyme had a Km of 2.8 μm for Ap4A when applying the coupled enzymatic assay for the determination of initial rate kinetics.  相似文献   

3.
Human platelets store considerable amounts of diadenosine 5′, 5′′′-p1, p3-triphosphate, which is released together with the homologue diadenosine tetraphosphate (Ap4A) upon thrombin-induced aggregation (Lüthje, J. & Ogilvie, A. (1983) Biochem. Biophys. Res. Commun. 115, 253–260). We now report that, when added to platelet-rich plasma at 10–20 μM, diadenosine triphosphate gradually induces aggregation. The addition of diadenosine tetraphosphate antagonizes this effect by rapidly disaggregating the platelets. When another physiological but structurally unrelated stimulus, i.e. PAF (Platelet activating factor) is introduced into the system, diadenosine triphosphate drastically enhances and prolongs the aggregatory effect of PAF. Again, Ap4A is antagonistic in this system. The mechanism of Ap3A-stimulation can be explained by the slow and continuous liberation of ADP from Ap3A by the action of a hydrolyzing enzyme which is present in human plasma. Our studies suggest that Ap3A may be physiologically important in providing a relative long-lived stimulus that can modulate platelet aggregation.  相似文献   

4.
A highly sensitive enzymatic assay for diadenosine 5′,5?-P1,P3-triphosphate (Ap3A) has been established on the basis of the coupled luminescence assay for diadenosine 5′,5?-P1,P3-tetraphosphate (A. Ogilvie (1981)Anal. Biochem.115, 302–307). Snake venom phosphodiesterase splits Ap3A into AMP plus ADP which can be measured in a luminescence reaction containing pyruvate kinase, phosphoenolpyruvate and luciferin-luciferase. The procedure is linear with Ap3A levels ranging from 0.1 to 2 pmol. The assay has been used to measure Ap3A in various eukaryotic cells after ion-exchange chromatography and high-performance liquid chromatography of acidic extracts of the cells. The level of diadenosine triphosphate was higher in all instances than the level of diadenosine tetraphosphate. When growing in the abdominal cavity of mice, Ehrlich ascites tumor cells contained high amounts of Ap3A (0.1 nmol106cells), allowing direct optical determination in the HPLC chromatography. The quantitative measurement of Ap3A with the luminescence assay gave identical results. Ap3A extracted from Ehrlich cells was also chromatographed with authentic nucleotide in two thin-layer systems providing additional proof for the existence of Ap3A in biological material.  相似文献   

5.
Diadenosine 5′,5‴-P1,P4-tetraphosphate (Ap4A) stimulates DNA synthesis in Xenopus laevis oocytes in the presence of activated DNA as template. Besides Ap4A, other analogues such as Ap3A, ATP and other derivatives are able to stimulate DNA polymerase activity. The effect of Ap4A on DNA synthesis is observed with poly(dT) and poly(dT)-poly(dA) as templates, while no effect is found with poly(dA)(dT)12–18 and poly(dC)(dG)12–18. In the presence of a poly(dT) template, the oocyte extract is able to utilize Ap4A as primer and to form a covalent bond between this dinucleotide and the nascent poly(dA) chain. An Ap4A-binding protein present in the system has been purified and separated from DNA polymerase α-primase after phosphocellulose chromatography. After this separation, Ap4A is no longer able to stimulate the polymerase activity, or to be utilized as primer by DNA polymerase α-primase.  相似文献   

6.
Diadenosine 5′,5?-P1,P4-tetraphosphate (Ap4A), an intracellular regulatory nucleotide, has been found to react with the antitumor drug cis-diamminedichloroplatinum(II) and its aqua derivative to form a single complex. This complex has been purified by high-performance liquid chromatography and characterized by 1H-nmr and CD spectroscopy. In this complex, Ap4A takes a very particular conformation. It is an N7-N7 chelate of the metal with the two adenines in a head-to-head arrangement and an antianti conformation of the adenosines. Platinum chelation leads to a large decrease of the Ap4A conformational flexibility.  相似文献   

7.
Abstract: [3H]Ryanodine binding to, as well as functions of, ryanodine receptor intracellular Ca2+ release channel complexes are modulated by several adenosine-based compounds. In this study, we determined the effects of endogenous compounds termed diadenosine polyphosphates (ApnAs; n = 2–6 phosphate groups) on [3H]ryanodine binding to membranes prepared from rat brain and skeletal and cardiac muscle. Under low ionic strength buffer conditions, [3H]ryanodine binding to brain membranes was significantly increased by 171% with 333 µMP1,P5-di(adenosine-5′) pentaphosphate (Ap5A) and by 209% with the same concentration of the metabolism-resistant ATP analogue βγ-methyleneadenosine 5′-triphosphate (AMP-PCP) compared with control values for [3H]ryanodine binding of 9.6 ± 1.8 fmol/mg of protein. Dose-related increases in [3H]ryanodine binding were observed for all five ApnAs tested [P1,P2-di(adenosine-5′) pyrophosphate (Ap2A), P1,P3-di(adenosine-5′) triphosphate (Ap3A), P1,P4-di(adenosine-5′) tetraphosphate (Ap4A), Ap5A, and P1,P6-di(adenosine-5′) hexaphosphate (Ap6A)] as well as AMP-PCP; oxidized salts of ApnAs stimulated [3H]ryanodine binding to a greater degree than did nonoxidized ApnAs. The apparent rank order for the capacity of these agents to increase [3H]-ryanodine binding was oxidized Ap4A = oxidized Ap5A > oxidized Ap3A > Ap6A > AMP-PCP > Ap5A > Ap2A. Addition of the approximate EC50 dose of oxidized Ap4A (37 µM) increased the affinity (KD) of ryanodine receptors from 34 ± 7 to 12 ± 2 nM; the apparent binding site density (Bmax) was not significantly different from control values of 107 ± 33 fmol/mg of protein. Increases in [3H]-ryanodine binding by either oxidized Ap4A or nonoxidized Ap5A were not further enhanced by coincubation with AMP-PCP, which suggests a similar site of action for the ApnAs and AMP-PCP. [3H]Ryanodine binding to skeletal and cardiac muscle membranes was enhanced by addition of oxidized Ap4A, Ap5A, and AMP-PCP. Oxidized Ap4A increased the specific binding by ninefold in skeletal muscle and by threefold in cardiac muscle. These results suggest that ApnAs, at physiologically relevant concentrations, may serve as endogenous modulators of ryanodine receptor-gated Ca2+ release channels.  相似文献   

8.
ATP was coupled with 5-bromo-4-chloro-3-indolyl phosphate using a water-soluble carbodiimide to yield 5-bromo-4-chloro-3-indolyl tetraphospho-5′-adenosine (BClp4A) which is an analog of diadenosine 5′,5′″-P1,P4-tetraphosphate (Ap4A). BClp4A is a chromogenic substrate for three different types of Ap4A catabolic enzyme in alkaline phosphatase-coupled reactions. Ap4A phosphorylase I from Saccharomyces cerevisiae was used as a model enzyme to demonstrate that BClp4A stains for enzymic activity in polyacrylamide gels under nondenaturing conditions. A yeast colony assay was developed to detect Ap4A phosphorylase I activity in situ using BClp4A as a chromogenic substrate. Ap4A phosphorylase I was assayed in situ in yeast transformed with a multicopy plasmid containing APA1, the gene encoding Ap4A phosphorylase I. BClp4A should facilitate screening of genomic or cDNA libraries for genes encoding Ap4A catabolic enzymes.  相似文献   

9.
Diadenosine 5′,5′”-P1,P4-tetraphosphate (Ap4A) cleaving enzymes are assumed to regulate intracellular levels of Ap4A, a compound known to affect cell proliferation and stress responses. From plants an Ap4A hydrolase was recently purified using tomato cells grown in suspension. It was partially sequenced and a peptide antibody was prepared (Feussner et al., 1996). Using this polyclonal monospecific antibody, an abundant nuclear location of Ap4A hydrolase in 4-day-old cells of atomato cell suspension culture is demonstrated here by means of immunocytochemical techniques using FITC (fluorescein-5-isothiocyanate) labeled secondary antibodies. The microscopic analysis of the occurrence of Ap4A hydrolase performed for different stages of the cell cycle visualized by parallel DAPI (4,6-diamidino-2-phenylindole) staining revealed that the protein accumulates within nuclei of cells in the interphase, but is absent in the nucleus as well as cytoplasm during all stages of mitosis. This first intracellular localization of an Ap4A degrading enzyme within the nucleus and its pattern of appearance during the cell cycle is discussed in relation to the suggested role of Ap4A in triggering DNA synthesis and cell proliferation.  相似文献   

10.
Aminoacyl tRNA synthetases, by means of a back reaction, are able to synthesize certain 5, 5 - P1, P4 — bisnucleoside tetraphosphates of biological importance, such as ANA. Here it is shown that HisRS and TrpRS (Bacillus stearothermophilus) and AlaRS (E. coli) also synthesize the hybrid compounds Ap4G, Ap4C, and Ap4U. GInRS (E. coli) is unable to synthesize any of the above compounds.AlaRS synthesizes Ap4U very poorly, and Ap4C and Ap4G almost as effectively as Ap4A. HisRS and TrpRS synthesize Ap4G, Ap4U and Ap3U quite effectively, and Ap4C very poorly. The fact that hybrid bisnucleoside tetraphosphates can be made by the same enzymes, and at rates comparable to Ap4A, suggests that these compounds may also occur in vivo.Abbreviations HPLC high pressure liquid chromatography - PEI polyethyleneimine - RS aminoacyl tRNA synthetase  相似文献   

11.
Di(1,N6-ethenoadenosine) 5′, 5-P1, P4-tetraphosphate, ε-(Ap4A), a fluorescent analog of Ap4A has been synthesized by reaction of 2-chloroacetaldehyde with Ap4A. At neutral pH this Ap4A analog presents characteristic maxima at 265 and 274 nm, shoulders at ca 260 and 310 nm and moderate fluorescence (λexc 307 nm, λem 410 nm). Enzymatic hydrolysis of the phosphate backbone produced a slight hyperchromic effect but a notorious increase of the fluorescence emission. Cytosolic extracts from adrenochromaffin tissue as well as cultured chromaffin cells were able to split ε(Ap4A) and catabolize the resulting ε-nucleotide moieties up to ε-Ado.  相似文献   

12.
Rv2613c is a diadenosine 5′,5?-P1,P4-tetraphosphate (Ap4A) phosphorylase from Mycobacterium tuberculosis H37Rv. Sequence analysis suggests that Rv2613c belongs to the histidine triad (HIT) motif superfamily, which includes HIT family diadenosine polyphosphate (ApnA) hydrolases and Ap4A phosphorylases. However, the amino acid sequence of Rv2613c is more similar to that of HIT family ApnA hydrolases than to that of typical Ap4A phosphorylases. Here, we report the crystal structure of Rv2613c, which is the first structure of a protein with ApnA phosphorylase activity, and characterized the structural basis of its catalytic activity. Our results showed that the structure of Rv2613c is similar to those of other HIT superfamily proteins. However, Asn139, Gly146, and Ser147 in the active site of Rv2613c replace the corresponding Gln, Gln, and Thr residues that are normally found in HIT family ApnA hydrolases. Furthermore, analyses of Rv2613c mutants revealed that Asn139, Gly146, and Ser147 are important active-site residues and that Asn139 has a critical role in catalysis. The position of Gly146 might influence the phosphorylase activity. In addition, the tetrameric structure of Rv2613c and the presence of Trp160 might be essential for the formation of the Ap4A binding site. These structural insights into Rv2613c may facilitate the development of novel structure-based inhibitors for treating tuberculosis.  相似文献   

13.
Abstract

A summary delineating the large scale synthetic studies to prepare labeled precursors of ribonucleosides-3′,4′,5′,5″- 2H 4 and -2′,3′,4′,5′,5″- 2H 5 from D-glucose is presented. The recycling of deuterium-labeled by-products has been devised to give a high overall yield of the intermediates and an expedient protocol has been elaborated for the conversion of 3-O-benzyl-α,β-D-allofuranose-3,4-d 2 6 to 1-O-methyl-3-O-benzyl-2-O-t-butyldimethylsilyl-α,β-D-ribofuranose-3,4,5,5′-d 4 16 (precursor of ribonucleosides-3′,4′,5′,5″- 2H 4 ) or to 1-O-methyl-3,5-di-O-benzyl-α,β-D-ribofuranose-3,4,5,5′-d 4 18 (precursor of ribonucleosides-3′,4′,5′,5″- 2H 4 ).  相似文献   

14.
The fragile histidine triad (Fhit) protein is a homodimeric protein with diadenosine 5′,5-P1,P3-triphosphate (Ap3A) asymmetrical hydrolase activity. We have cloned the human cDNA Fhit in the pPROEX-1 vector and expressed with high yield in Escherichia coli with the sequence Met-Gly-His6-Asp-Tyr-Asp-Ile-Pro-Thr-Thr followed by a rTEV protease cleavage site, denoted as “H6TV,” fused to the N-terminus of Fhit. Expression of H6TV–Fhit in BL21(DE3) cells for 3 h at 37°C produced 30 mg of H6TV–Fhit from 1 L of cell culture (4 g of cells). The H6TV–Fhit protein was purified to homogeneity in a single step, with a yield of 80%, using nickel-nitrilotriacetate resin and imidazole buffer as eluting agent. Incubation of H6TV–Fhit with rTEV protease at 4°C for 24 h resulted in complete cleavage of the H6TV peptide. There were no unspecific cleavage products. The purified Fhit protein could be stored for 3 weeks at 4°C without loss of activity. The pure protein was stable at −20°C for at least 18 months when stored in buffer containing 25% glycerol. Purified Fhit was highly active, with a Km value for Ap3A of 0.9 μM and a kcat(monomer) value of 7.2 ± 1.6 s−1 (n = 5). The catalytic properties of unconjugated Fhit protein and the H6TV–Fhit fusion protein were essentially identical. This indicates that the 24-amino-acid peptide containing the six histidines fused to the N-terminus of Fhit does not interfere in forming the active homodimers or in the binding of Ap3A.  相似文献   

15.
Effect of P2Y Agonists on Adenosine Transport in Cultured Chromaffin Cells   总被引:1,自引:0,他引:1  
Abstract: Adenosine transport in cultured chromaffin cells was inhibited by purinergic P2y-receptor agonists without significant changes in the affinity constant, the values being between 1 ± 0.4 and 1.6 ± 0.6 μM. The Vmax parameter was modified significantly, being 40 ± 1.0, 26 ± 5.0, 32 ± 3.0, and 22 ± 4.7 pmol/106 cells/min for control, adenosine-5′-O-(2-thiodiphosphate), 5′-adenylylimidodiphosphate, and P1,P4-di(adenosine-5′-) tetraphosphate (Ap4A) (100 μM for every effector), respectively. Ap4A, a physiological ligand for P2y receptors in chromaffin cells, showed the highest inhibitory effect (45%). This transport inhibition is explained by an increase in the cytosolic Ca2+ concentration ([Ca2+]i) and the activation of protein kinase C (PKC). Experiments of [Ca2+]i measurement with the fura-2 technique showed that P2y agonists, as well as bradykinin, were able to increase [Ca2+]i, this effect being independent of the presence of extracellular Ca2+. The peptide bradykinin, determined to be coupled to phosphatidylinositol hydrolysis and internal Ca2+ mobilization in chromaffin cells, exhibited a behavior similar to that of P2y agonists in adenosine transport inhibition (39%). P2y agonists and bradykinin increased PKC activity associated with the membrane fraction (about 50% increase in particulate PKC activity with respect to controls). The present studies suggest that adenosine transport is regulated by P2y-purinergic receptors mediated via Ca2+ mobilization and PKC activation.  相似文献   

16.
Among numerous proteins containing pairs of regulatory cystathionine β-synthase (CBS) domains, family II pyrophosphatases (CBS-PPases) are unique in that they generally contain an additional DRTGG domain between the CBS domains. Adenine nucleotides bind to the CBS domains in CBS-PPases in a positively cooperative manner, resulting in enzyme inhibition (AMP or ADP) or activation (ATP). Here we show that linear P1,Pn-diadenosine 5′-polyphosphates (ApnAs, where n is the number of phosphate residues) bind with nanomolar affinity to DRTGG domain-containing CBS-PPases of Desulfitobacterium hafniense, Clostridium novyi, and Clostridium perfringens and increase their activity up to 30-, 5-, and 7-fold, respectively. Ap4A, Ap5A, and Ap6A bound noncooperatively and with similarly high affinities to CBS-PPases, whereas Ap3A bound in a positively cooperative manner and with lower affinity, like mononucleotides. All ApnAs abolished kinetic cooperativity (non-Michaelian behavior) of CBS-PPases. The enthalpy change and binding stoichiometry, as determined by isothermal calorimetry, were ∼10 kcal/mol nucleotide and 1 mol/mol enzyme dimer for Ap4A and Ap5A but 5.5 kcal/mol and 2 mol/mol for Ap3A, AMP, ADP, and ATP, suggesting different binding modes for the two nucleotide groups. In contrast, Eggerthella lenta and Moorella thermoacetica CBS-PPases, which contain no DRTGG domain, were not affected by ApnAs and showed no enthalpy change, indicating the importance of the DTRGG domain for ApnA binding. These findings suggest that ApnAs can control CBS-PPase activity and hence affect pyrophosphate level and biosynthetic activity in bacteria.  相似文献   

17.
Sulfite-oxidizing enzyme activities were analyzed in cell-free extracts of aerobically grown cells of Acidianus ambivalens, an extremely thermophilic and chemolithoautotrophic archaeon. In the membrane and cytoplasmic fractions, two distinct enzyme activities were found. In the membrane fraction, a sulfite:acceptor oxidoreductase activity was found [530 mU (mg protein)–1; apparent K m for sulfite, 3.6 mM]. In the cytoplasmic fraction the following enzyme activities were found and are indicative of an oxidative adenylylsulfate pathway: adenylylsulfate reductase [138 mU (mg protein)–1], adenylylsulfate:phosphate adenyltransferase [“ADP sulfurylase”; 86 mU (mg protein)–1], adenylate kinase [650 mU (mg protein)–1], and rhodanese [thiosulfate sulfur transferase, 9.2 mU (mg protein)–1]. In addition, 5′,5′′′-P1,P4-di(adenosine-5′) tetraphosphate (Ap4A) synthase and Ap4A pyrophosphohydrolase activities were detected. Received: 17 August 1998 / Accepted: 29 April 1999  相似文献   

18.
The putative human tumor suppressor gene FHIT (fragile histidine triad) (M. Ohta et al., Cell 84:587–597, 1996) encodes a protein behaving in vitro as a dinucleoside 5′,5′′′-P1,P3-triphosphate (Ap3A) hydrolase. In this report, we show that the Saccharomyces cerevisiae APH1 gene product, which resembles human Fhit protein, also hydrolyzes dinucleoside 5′,5′-polyphosphates, with Ap3A being the preferred substrate. Accordingly, disruption of the APH1 gene produced viable S. cerevisiae cells containing reduced Ap3A-hydrolyzing activity and a 30-fold-elevated Ap3N concentration.  相似文献   

19.
Abstract

Efficient syntheses of 2′-bromo-2′-deoxy-3′,5′-O-TPDS-uridine (5a) and 1-(2-bromo-3,5-O-TPDS-β-D-ribofuranosyl)thymine (5b) from uridine and 1-(β-D-ribofuranosyl)thymine are described, respectively. The key step is a treatment of 3′,5′-O-TPDS-O2,2′-anhydro-1-(β-D-ardbinofuranosyl)uracil (4a) and -thymine (4b) with LiBr in the presence of BF3-OEt2 in 1,4-dioxane at 60°C to give 5a and 5b in 98%, and 96% yield, respectively.

  相似文献   

20.
Abstract

Reaction of 2′,3′,5′-O-silylated inosine derivative 1 with 2, 3-O-isopropylidene-5-O-tritylribosyl chloride (3) in a two-phase (CH2Cl2-aq. NaOH) system in the presence of Bu4NBr gave three products, i. e., 6-O-α-, 6-O-β-, and N 1-β-isomers of glycosides 4, 5a, and 5b. A similar PTC reaction of 1 with 2, 3, 5-tri-O-benzylribosyl bromide (9) gave four regio- and stereo-isomers involving the N1-β-glycoside 10. Reaction of 1 with 2, 3, 5-tri-O-benzoylribosyl bromide (11) afforded three products involving the desired N1-β-glycoside 12b, which could be deprotected to give N 1-ribosylinosine (15b) as a useful intermediate for the synthesis of cIDPR.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号