首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that attenuation of axoplasmic transport by application of vinblastine to the developing infraorbital nerve (ION) results in a loss of central vibrissae-related patterns that is not accompanied by changes in the receptive field sizes for the V primary afferents innervating the whisker follicles. The present study examines the relationship between the loss of central vibrissae-related patterns and alterations in the response properties of neurons in the V principal sensory nucleus (PrV) of adult rats that sustained application of vinblastine to the ION at birth. Absence of histochemically demonstrable vibrissae-related patterns in PrV resulted in only modest changes in the receptive fields and response properties of vibrissae-sensitive neurons in this nucleus that projected to the contralateral thalamus. Response latencies to electrical activation of the V ganglion were similar in treated and untreated animals. The mean receptive field size was significantly increased from 1.3 +/- 0.7 vibrissae in controls to 1.7 +/- 0.9 vibrissae in vinblastine-treated animals, and the percentage of cells yielding a tonic response to vibrissae deflection was markedly reduced (p < 0.01 for both measures). Phasically responding cells recorded in vinblastine-treated animals showed a significant reduction in the mean number of spikes per stimulus following deflection of the vibrissae in either the preferred or non-preferred direction relative to cells recorded in normal animals (p < 0.05). The present results indicate that disruption of the normal vibrissae-related aggregates of neurons in PrV by application of vinblastine to the ION has limited effects on the functional representation of the vibrissae in this nucleus.  相似文献   

2.
Primary sensory information from neurons innervating whisker follicles on one side of a rat's face is relayed primarily through two subnuclei of the brainstem trigeminal complex to the contralateral thalamus. The present experiments were undertaken to separate the contribution of the principal trigeminal nucleus (PrV) from that of the spinal trigeminal nucleus (SpV) to whisker evoked responses in the ventral posterior medial (VPM) nucleus in the adult rat thalamus. Extracellular single-unit responses of VPM neurons to controlled stimulation of the contralateral whiskers under urethane anesthesia were quantified in terms of receptive field size, modal latency, response probability and response magnitude. The SpV contribution to VPM cell responses was isolated by making kainic acid lesions of the PrV. The PrV contribution was ascertained by cutting the trigeminothalamic axons arising from SpV just before they cross the midline. After destruction of the PrV, the SpV pathway alone produced large receptive fields (mean: 9.04 whiskers) and long latency (mean: 11.07 ms) responses from VPM neurons. In contrast, PrV input alone (SpV disconnected) generated small receptive fields (mean: 1.06 whiskers) and shorter latency (mean: 6.74 ms) responses. With both pathways intact the average receptive field size was 2.4 whiskers and peak (modal) response latency was 7.33 ms. The responses with both pathways intact were significantly different from either pathway operating in isolation. Response probability and magnitude followed the same trend. We conclude that normal responses of individual VPM neurons represent the integration of input activity transmitted through both PrV and SpV pathways.  相似文献   

3.
Cell structure and response properties in the trigeminal subnucleus oralis   总被引:1,自引:0,他引:1  
Extra- and intracellular recording, electrical stimulation, receptive field mapping, and horseradish peroxidase injection techniques were used to study the structure of functionally identified neurons in trigeminal (V) brainstem subnucleus oralis of the rat. Of 15 heavily labeled cells located within oralis, 4 were local-circuit neurons with receptive fields restricted to either an incisor, guard hairs, one vibrissa, or deep facial tissue (nociceptors). Their morphologies were highly varied, with expansive and spiny dendritic trees and recurrent and intersubnuclear axon collaterals. Oralis local-circuit neurons therefore most closely resembled non-vibrissa-sensitive local-circuit cells in adjacent subnucleus interpolaris. Six other stained cells projected to contralateral thalamus, and two others projected to ipsilateral cerebellum. They typically had intramodality convergent receptive fields (i.e., spanning more than one receptor organ, such as multiple vibrissae or teeth) with widespread dendritic trees, and were therefore indistinguishable from similarly projecting cells in interpolaris. Two other cells projected to the ipsilateral spinal cord, as well as other V brainstem subnuclei. One of these responded to high-threshold mechanical stimulation of teeth; the other was discharged by deflection of one mystacial vibrissa. Their dendrites were very widespread and ended in spiny and bulbous appendages. Local axon collaterals were also extensive. The remaining oralis cell had two axons, one projecting to the thalamus, the other to the spinal cord. Its receptive field expressed convergence from multiple receptor organs, including vibrissae, guard hairs, and skin. Its somadendritic morphology was similar to that of oralis cells projecting only to thalamus. We conclude that, with some exceptions, the extensive dendritic trees, axon branching, convergence, and functional diversity of oralis cells approximate those described previously for functionally equivalent neurons in interpolaris (Jacquin et al., 1989a,b). Such anatomical and physiological properties are rarely seen, however, in nucleus principalis (Jacquin et al., 1988a). The structure and function of three atypical principalis cells with structural and functional characteristics typical of oralis cells are also described. It is argued that such cells are rostrally displaced oralis cells.  相似文献   

4.
Previous experiments from this laboratory have indicated that transection of the infraorbital nerve (ION, the trigeminal \[V] branch that supplies the mystacial vibrissae follicles) at birth and in adulthood has markedly different effects on galanin immunoreactivity in the V brainstem complex. Adult nerve transection increases galanin immunoreactivity in the superficial layers of V subnucleus caudalis (SpC) only, while neonatal nerve transection results in increased galanin expression in vibrissae-related primary afferents throughout the V brainstem complex. The present study describes the distribution of binding sites for this peptide in the mature and developing V ganglion and brainstem complex and determines the effects of neonatal and adult ION damage and the associated changes in galanin levels upon their distribution and density. Galanin binding sites are densely distributed in all V brainstem subnuclei and are particularly dense in V subnucleus interpolaris and the superficial layers of SpC. They are present at birth (P-0) and their distribution is similar to that in adult animals. Transection of the ION in adulthood and examination of brainstem 7 days later indicated marked reductions in the density of galanin binding sites in the V brainstem complex. With the exception of the superficial laminae of SpC, the same reduction in density remained apparent in rats that survived 45 days after nerve cuts. Transection of the ION on P-0 resulted in no change in the density of galanin binding sites in the brainstem after either 7 or 60 days survival. These results indicate that densely distributed galanin binding sites are present in the V brainstem complex of both neonatal and adult rats, that they are located in regions not innervated by galanin-positive axons, and that their density is not significantly influenced by large lesion-induced changes in the primary afferent content of their natural ligand.  相似文献   

5.
Trigeminal (V) nucleus principalis (PrV) is the requisite brainstem nucleus in the whisker-to-barrel cortex model system that is widely used to reveal mechanisms of map formation and information processing. Yet, little is known of the actual PrV circuitry. In the ventral “barrelette” portion of the adult mouse PrV, relationships between V primary afferent terminals, thalamic-projecting PrV neurons, and gamma-aminobutyric acid (GABA)-ergic terminals were analyzed in the electron microscope. Primary afferents, thalamic-projecting cells, and GABAergic terminals were labeled, respectively, by Neurobiotin injections in the V ganglion, horseradish peroxidase injections in the thalamus, and postembedding immunogold histochemistry. Primary afferent terminals (Neurobiotin- and glutamate-immunoreactive) display asymmetric and multiple synapses predominantly upon the distal dendrites and spines of PrV cells that project to the thalamus. Primary afferents also synapse upon GABAergic terminals. GABAergic terminals display symmetric synapses onto primary afferent terminals, the somata and dendrites (distal, mostly) of thalamic-projecting neurons, and GABAergic dendrites. Thus, primary afferent inputs through the PrV are subject to pre- and postsynaptic GABAergic influences. As such, circuitry exists in PrV “barrelettes” for primary afferents to directly activate thalamic-projecting and inhibitory local circuit cells. The latter are synaptically associated with themselves, the primary afferents, and with the thalamic-projecting neurons. Thus, whisker-related primary afferent inputs through PrV projection neurons are pre- and postsynaptically modulated by local circuits.  相似文献   

6.
Neonatal transection results in a marked reduction of the number of trigeminal (V) ganglion cells that contribute axons to the regenerate infraorbital nerve (ION; Jacquin and Rhoades, 1985; Chiaia et al., 1987). Such lesions also produce a profound deafferentation of the V brain stem complex that appears to spare the innervation of layers I and II of subnucleus caudalis (SpC) by subtance-P-positive (SP-positive) primary afferents (Jacquin and Rhoades, 1985; Rhoades et al., 1988). In the present study, we combined retrograde tracing with immunocytochemistry to determine whether neonatal transection of the ION alters the percentage of SP-positive V ganglion cells that contribute axons to this V branch upon regeneration. In V ganglia ipsilateral to the intact ION (n = 8), 11.6% ± 3.2% of the cells labeled after application of true blue (TB) to the ION were also SP-positive. In ganglia ipsilateral to the neonatally damaged nerve (n = 8), 18.6% ± 4.7% of the cells labeled after application of TB to the regenerate ION were also SP-positive (p < 0.001). We also compared the SP content of intact ganglia (n = 10) with that of ganglia ipsilateral to the damaged nerve (n = 10) by means of radioimmunoassay. The normal V ganglia contained (mean ± SD) 3496 ± 774 pg SP/mg protein. The value for the ganglia ipsilateral to the damaged nerve was 5533 ± 1746 pg SP/mg protein (p < 0.01). There was no significant difference between SP levels on the control and partially deafferented sides of the brain stem in neonatally nerve-damaged adult rats.

In one additional experiment, we injected TB into both vibrissa pads of seven rats on the day of birth prior to transection of the ION. After an 8-hr delay, the nerve on one side was then cut and allowed to regenerate, and both V ganglia were then processed for immunocytochemistry. On the nerve-damaged side, 25.8% of the TB-labeled cells were SP-positive. The value for the intact side was 12.0% (p < 0.00001). This result demonstrated that the lesion-induced change in the percentage of SP-positive ION cells was not1. the result of either late-growing axons from SP-positive ganglion cells that may have been missed by our nerve cuts or collateral sprouting into the regenerate ION by undamaged SP-positive ganglion cells.  相似文献   

7.
Extra- and intracellular responses of 128 neurons to paired stimulation of the infraorbital nerve and vibrissae, recorded in the projection zone of the vibrissae in cortical area SI, were studied in adult cats immobilized with tubocurarine. Conditioning stimulation completely suppressed the ability of different neurons to respond for periods of between 10 and 120 msec. The duration of the period of total suppression of test responses was shown to depend on the location of the stimulated vibrissa in the peripheral receptive field of the neurons studied. Excitatory and inhibitory responses of maximal intensity arose in the neurons to stimulation of receptive field centers. The functional role of the decrease in intensity of excitatory responses during stimulation of vibrissae located at different distances from centers of the receptive fields of cortical neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 2, pp. 117–124, April, 1981.  相似文献   

8.
Responses of 375 primary somatosensory cortical neurons located in the projection area of the vibrissae to electrical stimulation of the infraorbital nerve and also to adequate stimulation of the vibrissae were investigated in unanesthetized cats immobilized with tubocurarine. Stimulation of the nerve and vibrissae most frequently evoked synaptic responses in the neurons, in the form of a short EPSP followed by an IPSP or, less frequently, as a primary IPSP; during extracellular recordings corresponding changes were observed in spike activity. In response to stimulation of the vibrissae, initial inhibition was found more often than to stimulation of the nerve (in 45 and 16% of neurons respectively). The difference between the minimal values of latent periods of IPSP and EPSP evoked by stimulation of the infraorbital nerve was 0.8 msec in different neurons, and the difference between the mean values 1.4 msec. Directional sensitivity of the cortical neurons was demonstrated (to a change in the direction of deflection of the vibrissae). Neurons located close together could differ in the character of their directional sensitivity during stimulation of the same vibrissae. It is concluded that short-latency inhibition arising in the primary projection area of the cat somatosensory cortex is predominantly afferent and not recurrent. The probable mechanisms of directional sensitivity of the neurons studied are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSSR, Kiev. Translated from Neirofiziologia, Vol. 11, No. 6, pp. 550–559, November, 1979.  相似文献   

9.
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain.  相似文献   

10.
Chronic exposure to morphine can impair performance in tasks which need sensory processing. Using single unit recordings we investigate the effect of chronic morphine exposure on the firing properties of neurons in layers IV and V of the whisker-related area of rat primary somatosensory cortex. In urethane-anesthetized animals, neuronal activity was recorded in response to principal and adjacent whisker deflections either stimulated independently or in a conditioning test paradigm. A condition test ratio (CTR) was calculated for assessing the inhibitory receptive field. In layer IV, chronic morphine treatment did not change the spontaneous discharge activity. On responses to principal and adjacent whisker deflections did not show any significant changes following chronic morphine exposure. The magnitude Off responses to adjacent whisker deflection decreased while its response latency increased. In addition, there was a significant increase in the latency of Off responses to principal whisker deflection. CTR did not change significantly following morphine exposure. Layer V neurons, on the other hand, did not show any significant changes in their spontaneous activity or their evoked responses following morphine exposure. Our results suggest that chronic morphine exposure has a subtle modulatory effect on response properties of neurons in barrel cortex.  相似文献   

11.
Extra- and intracellular responses of neurons in the primary somatosensory cortex to repetitive mechanical stimulation of the vibrissae at different frequencies were studied in unanesthetized curarized adult cats. Unlike responses to electrical stimulation of the combined afferent input (the infraorbital nerve) spike discharges of neurons in response to vibrissal stimulation can reproduce rather higher frequencies of stimulation and their initial character changes more often in the course of the repetitive series. Most cortical neurons were characterized by limitation of the area of their peripheral receptive fields with an increase in the frequency of adequate repetitive stimulation. A group of cortical neurons was distinguished by its ability to respond to high-frequency stimulation and to generate burst discharges. Comparison of the frequency characteristics of spike responses of these cells and of inhibitory synaptic action in other cortical neurons led to the conclusion that this group of cells thus distinguished may be inhibitory cortical neurons. The role of interaction between excitatory and inhibitory processes arising in cortical neurons during repetitive stimulation of different areas of their receptive fields is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 164–171, March–April, 1982.  相似文献   

12.
Abstract

Trigeminal ganglion (TG) neurons innervate the grid-like array of whisker follicles on the face of the mouse. Central TG axons project to the trigeminal (V) brainstem nuclear complex, including the nucleus principalis (PrV) and the spinal subnucleus interpolaris (SpVi), where they innervate barrelettes that are organized in a pattern that recapitulates the whisker pattern on the face. Neurotrophin-3 (NT-3) supports a population of TG cells that supply slowly adapting mechanoreceptors in the whisker pad. We examined mice at embryonic day 17 (E17) and on the day of birth (P0) with null mutations of NT-3, Bax, a proapoptotic gene associated with naturally occurring cell death, and Bax/NT-3 double knockout (KO) mutants to determine if: (1) the number of TG cells would be reduced; (2) eliminating the Bax gene would rescue the NT-3-dependent neurons; and (3) the central projections of the rescued axons in the Bax/NT-3 double KO mice would fail to develop the barrelette patterns in the PrV and SpVi subnuclei. In mice at E17, NT-3?/? mutants had 65% fewer TG neurons than found in age-matched wild-type (WT) mice, and at P0, the number was reduced by 55% (p?<?0.001 for both). Bax null mutant mice at E17 had 132% of the WT number of TG cells (p?<?0.001), although the numbers returned to WT levels by P0. Bax/NT-3 double KO mice at E17 had TG cell numbers equal to those seen in WT, but the double KO failed to retain WT TG neuron numbers in P0 mice (39% fewer cells; p?<?0.001). In all cases of reduced experimental neuron numbers, and in the E17 Bax?/? mice with supernumerary cells, the barrelette patterns in the PrV and SpVi were normal. Only a slight qualitative reduction in overall barrelette field area and clarity of barrelettes were seen. These results suggest that NT-3 is not necessary for barrelette pattern formation in the brainstem.  相似文献   

13.
Previous studies have shown that intracortical projections in layer IV of the vibrissae representation of primary somatosensory cortex (S-I) are arrayed in a pattern complementary to that of thalamocortical axons (TCAs). Elevation of cortical serotonin (5-HT) in rats during the first postnatal week results in a transient disruption of the vibrissae-related pattern of TCAs and layer IV neurons in S-I. The present study examines the influence of elevated cortical 5-HT levels and the attendant loss of vibrissae-related TCA clusters on the organization of S-I intracortical connections. Cortical 5-HT was elevated in neonatal rats via chronic injections of clorgyline from birth until P-6. Animals were euthanized on P-6 or allowed to survive an additional 4 days without further clorgyline treatment. Distributions of TCAs and intracortical axons were assessed via application of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Di-I) and 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (Di-A) to the thalamic radiations and directly into the cortical barrelfield, respectively. Chronic administration of clorgyline resulted in a loss of the vibrissae-related organization of TCAs in layer IV of S-I. There was also a loss of the complementary pattern of intracortical projections in layer IV of this region. Discontinuation of clorgyline treatment resulted in a return of the vibrissae-related pattern of TCAs as well as the complementary pattern of intracortical projections. These results are consistent with the conclusion that the normal organization of intracortical projections in this region of S-I depends on the presence of the orderly array of TCAs.  相似文献   

14.
For a moving animal, optic flow is an important source of information about its ego-motion. In flies, the processing of optic flow is performed by motion sensitive tangential cells in the lobula plate. Amongst them, cells of the vertical system (VS cells) have receptive fields with similarities to optic flows generated during rotations around different body axes. Their output signals are further processed by pre-motor descending neurons. Here, we investigate the local motion preferences of two descending neurons called descending neurons of the ocellar and vertical system (DNOVS1 and DNOVS2). Using an LED arena subtending 240° × 95° of visual space, we mapped the receptive fields of DNOVS1 and DNOVS2 as well as those of their presynaptic elements, i.e. VS cells 1–10 and V2. The receptive field of DNOVS1 can be predicted in detail from the receptive fields of those VS cells that are most strongly coupled to the cell. The receptive field of DNOVS2 is a combination of V2 and VS cells receptive fields. Predicting the global motion preferences from the receptive field revealed a linear spatial integration in DNOVS1 and a superlinear spatial integration in DNOVS2. In addition, the superlinear integration of V2 output is necessary for DNOVS2 to differentiate between a roll rotation and a lift translation of the fly.  相似文献   

15.
The role of c-Jun in the apoptotic response of cells to the microtubule inhibitor vinblastine was investigated using fibroblasts lacking or overexpressing c-Jun. c-Jun null cells were found to be more sensitive than wild-type cells at low (1-3 nM) concentrations of vinblastine, but showed essentially identical apoptotic responses as wild-type cells at a higher concentration of 10nM. In contrast, c-Jun overexpressing cells were highly vinblastine-resistant, with an IC50 of 12-fold greater than wild-type cells. The fate of cells exposed to lethal concentrations of vinblastine was examined by propidium iodide staining and flow cytometry. All cell types appeared to undergo mitotic arrest prior to apoptosis. Apoptosis of wild-type cells was associated with significant DNA re-replication. In contrast, DNA re-replication was much less prominent in vinblastine-treated c-Jun null cells and absent during apoptosis of c-Jun overexpressing cells. These results suggest that c-Jun plays a key role in the cellular sensitivity to vinblastine. In addition, c-Jun appears to regulate the pathway to cell death following mitotic arrest.  相似文献   

16.
A comparative study of neuronal response in separate cortical columns of the somatosensory cortex (the barrel field area) was made in unanesthetized partially curarized white rats under various circumstances: during passive deflection of immobile vibrissa, unhindered volitional sweeping movement of the vibrissae, and during movement induced by stimulating the motor cortex and facial muscles. Differences in the response of the same neurons emerged under these different experimental situations. Different groups of neurons — responding before, during, and after volitional vibrissa movements were observed. Such response is thought to be triggered by different afferent trains reaching cortical column neurons from sources including the motor cortex, the vibrissa follicle receptors, and facial muscles.Institute of Neurocybernetics, State University, Rostov-on-Don. State University, Simferopol. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 235–242, March–April, 1990.  相似文献   

17.
The isthmo‐optic nucleus (ION) of chick embryos is a model system for the study of retrograde trophic signaling in developing CNS neurons. The role of brain‐derived neurotrophic factor (BDNF) is well established in this system. Recent work has implicated neurotrophin‐4 (NT‐4), glial cell line–derived neurotrophic factor (GDNF), and insulin‐like growth factor I (IGF‐I) as additional trophic factors for ION neurons. Here it was examined in vitro and in vivo whether these factors are target‐derived trophic factors for the ION in 13‐ to 16‐day‐old chick embryos. Unlike BDNF, neither GDNF, NT‐4, nor IGF‐I increased the survival of ION neurons in dissociated cultures identified by retrograde labeling with the fluorescent tracer DiI. BDNF and IGF‐I promoted neurite outgrowth from ION explants, whereas GDNF and NT‐4 had no effect. Injections of NT‐4, but not GDNF, in the retina decreased the survival of ION neurons and accelerated cell death in the ION. NT‐4–like immunoreactivity was present in the retina and the ION. Exogenous, radiolabeled NT‐4, but not GDNF or IGF‐I, was retrogradely transported from the retina to the ION. NT‐4 transport was significantly reduced by coinjection of excess cold nerve growth factor (NGF), indicating that the majority of NT‐4 bound to p75 neurotrophin receptors during axonal transport. Binding of NT‐4 to chick p75 receptors was confirmed in L‐cells, which express chick p75 receptors. These data indicate that GDNF has no direct trophic effects on ION neurons. IGF‐I may be an afferent trophic factor for the ION, and NT‐4 may act as an antagonist to BDNF, either by competing with BDNF for p75 and/or trkB binding or by signaling cell death via p75. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 289–303, 2000  相似文献   

18.
The aim of this study was to investigate the role of inhibitory processes in S-1 cortex of cats. The inhibition was evoked by "natural" afferent stimulation of the fascial vibrissae. For this purpose, two neighboring vibrissae were sequentially stimulated by mechanical deflection; single unit activity was recorded simultaneously from the cortex. Results showed that conditioning by afferent stimulation significantly influenced the directional sensitivity of cortical neurons. These data and analysis of spatial pattern of stimulated vibrissa indicate that detector neurons could be quickly modified during sensory processing.  相似文献   

19.
Previous studies have shown that intracortical projections in layer IV of the vibrissae representation of primary somatosensory cortex (S-I) are arrayed in a pattern complementary to that of thalamocortical axons (TCAs). Elevation of cortical serotonin (5-HT) in rats during the first postnatal week results in a transient disruption of the vibrissae-related pattern of TCAs and layer IV neurons in S-I. The present study examines the influence of elevated cortical 5-HT levels and the attendant loss of vibrissae-related TCA clusters on the organization of S-I intracortical connections. Cortical 5-HT was elevated in neonatal rats via chronic injections of clorgyline from birth until P-6. Animals were euthanized on P-6 or allowed to survive an additional 4 days without further clorgyline treatment. Distributions of TCAs and intracortical axons were assessed via application of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Di-I) and 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (Di-A) to the thalamic radiations and directly into the cortical barrelfield, respectively. Chronic administration of clorgyline resulted in a loss of the vibrissae-related organization of TCAs in layer IV of S-I. There was also a loss of the complementary pattern of intracortical projections in layer IV of this region. Discontinuation of clorgyline treatment resulted in a return of the vibrissae-related pattern of TCAs as well as the complementary pattern of intracortical projections. These results are consistent with the conclusion that the normal organization of intracortical projections in this region of S-I depends on the presence of the orderly array of TCAs.  相似文献   

20.
Vibrissae trimming during the first 20 days of postnatal life caused alternations of the properties of the receptive fields of single neurons in the barrel-field cortex in rats. The following changes were found in the deafferented cortex: (i) an extension of the receptive fields of single neurons as judged from an increase in the number of vibrissae with short-latency excitatory responses to stimulation and (ii) a depression of the inhibitory receptive field tuning mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号