首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

In this study, the effects of Aspergillus niger in coculture with the basidiomycetes, Trametes versicolor, T. maxima, and Ganoderma spp., were studied to assess H2O2 production and laccase (Lac), Lignin Peroxidase (LiP), and manganese peroxidase (MnP) activities. The results indicated that maximum discoloration was of 97%, in the T. maxima and A. niger coculture, where the concentration of H2O2 was 5?mg/L and 6.3?mg/L in cultures without and with dye, respectively. These concentrations of H2O2 were 1.6- and 1.8-fold higher than monocultures of T. maxima (3.37?mg/L) and A. niger (3.87?mg/L), respectively. In the same coculture, the LiP and MnP enzyme activities also increased 12-fold, (from 0.08?U/mg to 0.99?U/mg), and 67-fold, (from 0.11?U/mg to 7.4?U/mg), respectively. The Lac activity increased 1.7-fold (from 13.46?U/mg to 24?U/mg). Further, a Box–Behnken experimental design indicated a 1.8-fold increase of MnP activity (from 7.4?U/mg to 13.3?U/mg). In addition, dye discoloration regression model obtained from the Box–Behnken experimental design showed a positively correlation with H2O2, (R2?=?0.58) and a negatively correlation with Lac activity (R2 = –0.7).  相似文献   

2.
A chemolithoautotrophic arsenite-oxidizing bacterium, designated strain KGO-5, was isolated from arsenic-contaminated industrial soil. Strain KGO-5 was phylogenetically closely related with Sinorhizobium meliloti with 16S rRNA gene similarity of more than 99%, and oxidized 5?mM arsenite under autotrophic condition within 60?h with a doubling time of 3.0?h. Additions of 0.01–0.1% yeast extract enhanced the growth significantly, and the strain still oxidized arsenite efficiently with much lower doubling times of approximately 1.0?h. Arsenite-oxidizing capacities (11.2–54.1?μmol?h?1?mg dry cells?1) as well as arsenite oxidase (Aio) activities (1.76–10.0?mU?mg protein?1) were found in the cells grown with arsenite, but neither could be detected in the cells grown without arsenite. Strain KGO-5 possessed putative aioA gene, which is closely related with AioA of Ensifer adhaerens. These results suggest that strain KGO-5 is a facultative chemolithoautotrophic arsenite oxidizer, and its Aio is induced by arsenic.  相似文献   

3.
4.
A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K m and V max for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe2+, Fe3+, and Al3+. When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).  相似文献   

5.
The overproduction of d-aminoacylase (d-ANase, 233.8 U/mg), N-acyl-d-glutamate amidohydrolase (d-AGase, 38.1 U/mg) or N-acyl-d-aspartate amidohydrolase (d-AAase, 6.2 U/mg) in Escherichia coli is accompanied by aggregation of the overproduced protein. To facilitate the expression of active enzymes, the molecular chaperones GroEL-GroES (GroELS), DnaK-DnaJ-GrpE (DnaKJE), trigger factor (TF), GroELS and DnaKJE or GroELS and TF were coexpressed with the enzymes. d-ANase (313.3 U/mg) and d-AGase (95.8 U/mg) were overproduced in an active form at levels 1.3- and 1.8-fold higher, respectively, upon co-expression of GroELS and TF. An E. coli strain expressing the d-AAase gene simultaneously with the TF gene exhibited a 4.3-fold enhancement in d-AAase activity (32.0 U/mg) compared with control E. coli expressing the d-AAase gene alone.  相似文献   

6.
Abstract

Strain DRP2-19 was detected to produce high yield of glucansucrase in MRS broth, which was identified to be Leuconostoc mesenteroides. In order for industrial glucansucrase production of L. mesenteroides DRP2-19, a one-factor test was conducted, then response surface method was applied to optimize its yield and discover the best production condition. Based on Plackett–Burman (PB) experiment, sucrose, Ca2+, and initial pH were found to be the most significant factors for glucansucrase production. Afterwards, effects of the three main factors on glucansucrase activity were further investigated by central composite design and the optimum composition was sucrose 35.87?g/L, Ca2+ 0.21?mmol/L, and initial pH 5.56. Optimum results showed that glucansucrase activity was increased to 3.94?±?0.43?U/mL in 24?hr fermentation, 2.66-fold higher than before. In addition, the crude enzyme was purified using ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. The molecular weight of glucansucrase was determined as approximately 170?kDa by Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was purified 15.77-fold and showed a final specific activity of 338.56?U/mg protein.  相似文献   

7.
Purpose. To study whether a cane improved balance recovery after perturbation during walking.

Method. This study was a crossover comparison comparing the effect of walking with and without a cane for balance recovery after perturbation during treadmill walking. Five normal young volunteers participated. The velocity and acceleration of a marker sited on the seventh cerebral vertebra (C7) and vertical hand motion were measured by a motion analysis system.

Result. When using a cane, C7 backward velocity increased by approximately 15% (413 SD 95?mm/s with cane vs. 358 SD 88?mm/s without). In addition, C7 backward acceleration increased by approximately 23% (3.2 SD 0.7?m/s2 with cane vs. 2.6 SD 0.8?m/s2 without) and the vertical motion of the right hand decreased (187 SD 98?mm with cane vs. 372 SD 260?mm without). Additionally, no subject was able to use a cane to broaden their base of support.

Conclusions. The ability to limit trunk extension is crucial for preventing falls. Therefore, using a cane jeopardizes recovery from backward balance loss. The results encourage further research on the risk of a cane on balance recovery for the elderly population and habitual cane users.  相似文献   

8.
CooC proteins are ATPases involved in the incorporation of nickel into the complex active site ([Ni-4Fe-4S]) cluster of Ni,Fe-dependent carbon monoxide dehydrogenases. The genome of the carboxydotrophic bacterium Carboxydothermus hydrogenoformans encodes five carbon monoxide dehydrogenases and three CooC-type proteins, of which CooC1 was shown to be a nickel-binding ATPase. We determined the crystal structure of CooC1 in four different states: empty, ADP-bound, Zn2+/ADP-bound, and Zn2+-bound. The structure of CooC1 consists of two spatially separated functional modules: an ATPase module containing the deviant Walker A motif and a metal-binding module that confers the specific function of CooC1. The ATPase module is homologous to other members of the MinD family and, in analogy to the dimeric structure of ATP-bound Soj, is likely responsible for the ATP-dependent dimerization of CooC1. Its core topology classifies CooC1 as a member of the MinD family of SIMIBI (signal recognition particle, MinD and BioD)-class NTPases. The crystal structure of Zn2+-bound CooC1 reveals a conserved C-X-C motif as the metal-binding site responsible for metal-induced dimerization. The competitive binding of Ni2+ and Zn2+ to CooC1 in solution confirms that the conserved C-X-C motif is also responsible for the interaction with Ni2+. A comparison of the different CooC1 structures determined suggests a mutual dependence of metal-binding site and nucleotide-binding site.  相似文献   

9.
3-Hydroxy-4(4H)-pyridone (3,4-DHP), a degraded product of mimosine [β-[N-(3-hydroxy-4-oxypyridyl)]-α-aminopropionic acid], is known to cause goiters, loss of hair, and infertility in animals, but limits of 3,4-DHP on separation and purification have prevented efforts on investigating other toxicity and biological properties of 3,4-DHP. By this study, a novel and simple isolation of 3,4-DHP was developed either from Leucaena leaves using an ion-exchanged resin or mimosine degraded in high temperature (110°C, 6?h). The inhibition of mimosine on the growth of barnyardgrass was approximately fourfold higher (IC50?=?0.04?mg?g?1) than that of 3,4-DHP (IC50?=?0.15?mg?g?1). In general, the antifungal activity of mimosine is much stronger than that of 3,4-DHP, but it differs depending on the kind of fungi. The 1,1-diphyenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of 3,4-DHP, in contrast with the growth inhibitory activity, is about fourfold stronger [EC50?=?2.4?mg?g?1 gallic acid equivalent (GAE)] than that of mimosine [EC50?=?10.3?mg?g?1 GAE]. This study is the first to report on the herbicidal, antifungal, and antioxidant activities of 3,4-DHP.  相似文献   

10.
Li N  Zhang S  Zhao Y  Li B  Zhang J 《Planta》2011,233(2):241-250
Cereal crops accumulate starch in the seed endosperm as an energy reserve. ADP-glucose pyrophosphorylase (AGPase) plays a key role in regulating starch biosynthesis in cereal seeds. The AGPase in the maize endosperm is a heterotetramer of two small subunits, encoded by Brittle2 (Bt2) gene, and two large subunits, encoded by the Shrunken2 (Sh2) gene. The two genes (Bt2, Sh2) from maize were introduced into two elite maize inbred lines, solely and in tandem, and under the control of endosperm-specific promoters for over-expression. PCR, Southern blotting, and real-time RT-PCR analysis indicated that the transgenes were integrated into the genome of transgenic plants and were over-expressed in their progeny. The over-expression of either gene enhanced AGPase activity, seed weight and starch content compared with the WT, but the amounts were lower than plants with over-expression of both Bt2 and Sh2. Developing seeds from co-expression transgenic maize plants had higher cytoplasmic AGPase activity: the 100-grain weight increased 15% over the wild type (WT), and the starch content increased to over 74% compared with the WT of 65%. These results indicate that over-expression of the genes in transgenic maize plants could improve kernel traits. This report provides a feasible approach for increasing starch content and seed weight in maize.  相似文献   

11.
Cellulases are important in the hydrolysis of lignocellulosic materials and thereby contribute to biomass conversion into fuels and chemicals. A cellulase-producing bacterium was isolated from decayed plant leaf litter in soil of a botanical garden. Based on morphological, biochemical and 16S rRNA gene sequencing, it was identified as Enterobacter cloacae IP8, with gene bank accession number NR118568.1. The bacterial cellulase was purified in a three-step procedure using lyophilization, ion exchange chromatography (QAE Sephadex A-50) and gel filtration (Biogel P-100). Two isoforms of the enzyme were purified 1.21 and 1.23 folds, respectively, with yields of 30 and 29% for isoforms A and B, respectively. Apparent molecular weights of 36.61?±?1.40 and 14.1?±?0.10?kDa were obtained for isoforms A and B, respectively, using gel filtration chromatography. Kinetic parameters Km and Vmax were 0.13?±?0.04?mg/ml and 3.84?±?0.05?U/ml/min, respectively, for isoform A and 0.58?±?0.06?mg/ml and 13.8?±?0.10?U/ml/min, respectively, for isoform B. Optimum pH (7.0) and temperature (60?°C) of cellulase activity were determined for both isoforms A and B. Na+ and Ca2+ enhanced the activities of both isoforms. Mg2+ inhibited the enzyme activity at concentrations 4–15?mM but, while it stimulated the activity of isoform A at concentrations 15–200?mM, it inhibited that of isoform B at same concentration range. The strong inhibition of the enzyme by ethylenediaminetetraacetic acid (EDTA) confirmed the enzyme as a metalloenzyme. These results reveal the purified cellulase from E. cloacae IP8 as a thermostable, acidic to neutral metalloenzyme, suggesting that it has good potential for biotechnological applications.  相似文献   

12.
Soybean seed coat peroxidase (SBP) is a valuable enzyme having a broad variety of applications in analytical chemistry, biochemistry, and food processing. In the present study, the sscp gene (Gene ID: 548068) was optimized based on the preferred codon usage of Escherichia coli, synthesized, and expressed in E. coli BL21(DE3). SDS-PAGE and western blot analysis of this expressed protein revealed that its molecular weight is approximately 39?kDa. The effects of induction temperature, concentration of isopropyl-β-D-thiogalactoside and hemin, induction time, expression time were optimized to enhance SBP production with a maximum activity of 11.23?U/mL (8.64?U/mg total protein). Furthermore, the kinetics of enzyme-catalyzed reactions of recombinant protein was determined. When 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) was used as substrate, optimum reaction temperature and pH of the enzyme were 85°C and 5.0, respectively. The effects of metal ions on the enzymatic reaction were also further investigated. The SBP was successfully expressed in E. coli BL21(DE3) which would provide a more efficient production strategy for industrial applications of SBP.  相似文献   

13.
The structural gene for phospholipase D (PLD) of an actinomycete, Streptoverticillium cinnamoneum, together with its promoter region was introduced into Streptomyces lividans using a shuttle vector—pUC702—for Escherichia coli and S. lividans. The transformant was found to secrete a large amount of PLD (about 2.0×104 U/l, 42 mg/l) when cultured in a jar fermentor. Both an initial glucose concentration of 17.5 g/l and the feeding of carbon and nitrogen sources are effective for efficient secretion of PLD; under these culture conditions, the amount of PLD secreted reached a maximum level (about 5.5×104 U/l, 118 mg/l) after about 60 h. In contrast to the original producer, Stv. cinnamoneum, which secretes only a small amount of PLD (about 1.1×103 U/l, 2 mg/l) along with other extracellular proteins, this heterologous expression system is markedly more efficient in production of secretory PLD.  相似文献   

14.
Agarase catalyzes the hydrolysis of agar, which is primarily used as a medium for microbiology, various food additives, and new biomass materials. In this study, we described the expression of the synthetic gene encoding β-agarase from Agarivorans albus (Aaβ-agarase) in Escherichia coli. The synthetic β-agarase gene was designed based on the biased codons of E. coli to optimize its expression and extracellular secretion in an active, soluble form. The synthesized agarase gene, including its signal sequence, was cloned into the pET-26 expression vector, and the pET-Aaβ-agarase plasmid was introduced into E. coli BL21-Star (DE3) cells. The E. coli transformants were cultured for high-yield secretion of recombinant Aaβ-agarase in Luria-Bertani broth containing 0.6?mM isopropyl β-D-1-thiogalactopyranoside for 9?h at 37°C. The expressed recombinant Aaβ-agarase was purified by ammonium sulfate precipitation and diethylaminoethyl-sepharose column chromatography, yielding ~10?mg/L Aaβ-agarase. The purified recombinant Aaβ-agarase exhibited optimal activity at pH 7 and 40°C, and its activity was strongly inhibited by Cu2+, Mn2+, Zn2+, and Al3+ ions. Furthermore, the KM and kcat values for purified Aaβ-agarase were ~0.02?mM and ~45/s, respectively. These kinetic values were up to approximately 15–100-fold lower than the KM values reported for other agarases and approximately 7–30-fold higher than the kcat/KM values reported for other agarases, indicating that recombinant Aaβ-agarase exhibited good substrate-binding ability and high catalytic efficiency. These results demonstrated that the E. coli expression system was capable of producing recombinant Aaβ-agarase in an active form, at a high yield, and with attributes useful in the relevant industries.  相似文献   

15.
The dextransucrase gene from Weissella confusa Cab3, having an open reading frame of 4.2?kb coding for 1,402?amino acids, was amplified, cloned, and expressed in Lactococcus lactis. The recombinant dextransucrase, WcCab3-rDSR was expressed as extracellular enzyme in M17 medium with a specific activity of 1.5?U/mg which after purification by PEG-400 fractionation gave 6.1?U/mg resulting in 4-fold purification. WcCab3-rDSR was expressed as soluble and homogeneous protein of molecular mass, approximately, 180?kDa as analyzed by SDS-PAGE. It displayed maximum enzyme activity at 35°C at pH 5.0 in 50?mM sodium acetate buffer. WcCab3-rDSR gave Km of 6.2?mM and Vm of 6.3?µmol/min/mg. The characterization of dextran synthesized by WcCab3-rDSR by Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses revealed the structural similarities with the dextran produced by the native dextransucrase. The modeled structure of WcCab3-rDSR using the crystal structures of dextransucrase from Lactobacillus reuteri (protein data bank, PDB id: 3HZ3) and Streptococcus mutans (PDB id: 3AIB) as templates depicted the presence of different domains such as A, B, C, IV, and V. The domains A and B are circularly permuted in nature having (β/α)8 triose phosphate isomerase-barrel fold making the catalytic core of WcCab3-rDSR. The structure superposition and multiple sequence alignment analyses of WcCab3-rDSR with available structures of enzymes from family 70 GH suggested that the amino acid residue Asp510 acts as a nucleophile, Glu548 acts as a catalytic acid/base, whereas Asp621 acts as a transition-state stabilizer and these residues are found to be conserved within the family.  相似文献   

16.
The Amycolatopsis cihanbeyliensis Mut43, which is obtained by UV radiation, exhibited endoglucanase activity of 5.21?U/mL, which was ~2.3-fold higher than that of the wild strain (2.04?U/mL). The highest enzyme activity was obtained after 3 days of incubation at 32?°C, pH 7.0, 150?rpm, and 6% NaCl in a liquid medium containing 1.5% (w/v) wheat straw (0.25?mm of particle size) and 0.6% (w/v) yeast extract. Enzyme activity was eluted as a single peak (gel filtration chromatography), and Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis of the corresponding peak revealed a molar mass of 30?kDa. Zymogram analysis confirmed the presence of a single active endoglucanase component. The enzyme was purified to ~21-fold, and the mean overall yield was ~6%. The purified endoglucanase was active up to 80?°C and showed a half-life of 214?min at 60?°C in the absence of substrate at pH 8.0. The apparent Km value for the purified endoglucanase was 0.70?mg/mL, while the Vmax value was 6.20 Units/μg. Endoglucanase activity was reduced (25%) by treatment with 30?U of proteinase K/mg. The addition of Mg+2 and Ca+2 (5?mM) enhanced endoglucanase activity. Additionally, endoglucanase activity in the presence of 5?mM SDS or organic solvents was 75 and 50% of maximum activity, respectively. The high levels of enzyme production from A. cihanbeyliensis Mut43 achieved under batch conditions, coupled with the temperature stability, activity over a broad pH range, relatively high stability (70–80%) in the presence of industrial laundry detergents and storage half-lives of 45 days at +4?°C and 75 days at ?20?°C signify the suitability of this enzyme for industrial applications as detergent additive.  相似文献   

17.
Abstract

The hydrolysates of soy protein and milk protein are nutritional and functional food ingredients. Aspergillus pseudoglaucus aspergillopepsin I (App) is an acidic protease, including signal peptide, propeptide, and catalytic domain. Here, we cloned the catalytic domain App with or without propeptide in Escherichia coli. The results showed that the App without propeptide was not expressed or did not exhibit activity and App with propeptide (proApp) was highly expressed with a specific activity of 903?U/mg. Moreover, the denaturation temperature of proApp was 4.1?°C higher than App’s. The proApp showed 104?U/mg and 252?U/mg hydrolysis activities towards soy protein and milk protein under acidic conditions. By RP-HPLC analysis, the peptides obtained from the hydrolysates of soy protein and milk protein were hydrophilic peptides. This work first demonstrates efficient proteolysis of soy protein and milk protein through the functional expression of full-length proApp, which will likely have valuable industrial applications.  相似文献   

18.
The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase.Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V max values and apparent K m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme.Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified non-phosphorylated Entner-Doudoroff pathway.  相似文献   

19.
To improve the productivity of Candida rugosa lipase (CRL) and alleviate respiration limitations during high cell-density fermentation, codon-optimized CRL LIP1, and Vitreoscilla hemoglobin (VHb) were co-expressed in Pichia pastoris. The activity of the recombinant strain that expressed LIP1 and VHb from dual promoters, named GS115/9Klip1FZvgb-lip1 #1, toward olive oil reached 620?U/mL, which was 1.69-fold greater than that of the recombinant strain GS115/9Klip1 #139 (365?U/mL) which only expressed LIP1 from a single promoter, and 1.37-fold greater than that of the recombinant strain GS115/9Klip1FZlip1 #39 (450?U/mL), which only expressed LIP1 from two promoters, in shaking flasks. With FM22 as the basic medium and methanol/D-sorbitol (1:1, v/v) as an inducer, the maximum activity of GS115/9Klip1FZvgb-lip1 #1 reached 7490?±?379.5?U/mL, which was 2.65-fold greater than that of GS115/9Klip1 #139 (2820?±?112?U/mL) and 1.82-fold greater than that of GS115/9Klip1FZlip1 #39 (4100?±?205?U/mL) in 10?L fermenters. The conversion ratio (C) and enantiomeric excess (ees) of racemic ibuprofen by immobilized CRL LIP1 reached 35.10 and 31.63%, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号