首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30–40 days of age, pre-pubertal period) of 40–50 g body weight were divided into the following: the ZC (zinc control) group—fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group—fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group—received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.  相似文献   

2.
The effect of polaprezinc, a chelate compound consisting of zinc ion and L-carnosine, on abnormalities of taste sensation induced by feeding a zinc-deficient diet to rats was examined by using the two-bottle preference test (quinine hydrochloride as a bitter taste and sodium chloride as a salty taste). Rats were fed either a zinc-deficient or a zinc-sufficient diet. The zinc-deficient diet increased the preference for both taste solutions, while polaprezinc (at doses of 3 and 10 mg/kg) restored the altered taste preferences. We also evaluated the proliferation of taste bud cells using 5-bromo-2'-deoxyuridine (BrdU). The BrdU incorporation into taste bud cells was significantly reduced in rats fed a zinc-deficient diet compared with rats fed a zinc-sufficient diet (from 50.8% to 45.0%, p<0.05) and this reduction was reversed by polaprezinc at doses of 1, 3, and 10 mg/kg, increasing to 50.2%, 53.5%, and 52.5%, respectively. These findings indicate that zinc deficiency induces the delayed of proliferation of taste bud cells, while polaprezinc improves cell proliferation. In conclusion, polaprezinc had a therapeutic effect in a rat model of abnormal taste sensation. Its mechanism of action was suggested to involve improvement of the decrease in taste bud cell proliferation caused by zinc deficiency.  相似文献   

3.
Diabetes mellitus is associated to a reduction of antioxidant defenses that leads to oxidative stress and complications in diabetic individuals. The present study was undertaken to investigate the effect of selenium on blood biochemical parameters, antioxidant enzyme activities, and tissue zinc levels in alloxan-induced diabetic rats fed a zinc-deficient diet. The rats were divided into two groups; the first group was fed a zinc-sufficient diet, while the second group was fed a zinc-deficient diet. Half of each group was treated orally with 0.5 mg/kg sodium selenite. Tissue and blood samples were taken from all animals after 28 days of treatment. At the end of the experiment, the body weight gain and food intake of the zinc-deficient diabetic animals were lower than that of zinc-adequate diabetic animals. Inadequate dietary zinc intake increased glucose, lipids, triglycerides, urea, and liver lipid peroxidation levels. In contrast, serum protein, reduced glutathione, plasma zinc and tissue levels were decreased. A zinc-deficient diet led also to an increase in serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and liver glutathione-S-transferase and to a decrease in serum alkaline phosphatase activity and glutathione peroxidase. Selenium treatment ameliorated all the values approximately to their normal levels. In conclusion, selenium supplementation presumably acting as an antioxidant led to an improvement of insulin activity, significantly reducing the severity of zinc deficiency in diabetes.  相似文献   

4.
The enzymes responsible for the posttranslational processing of precursor proteins to form alpha-amidated peptide hormones require the availability of several cofactors, including zinc, copper and ascorbate ions. Major changes in the availability of these cofactors, as well as the rate of hormone precursor conversion to active hormone, occur during neonatal development, aging and caloric restriction. The effects of 6 weeks of a zinc-deficient (ZD1) diet, pair feeding (PF) and partial zinc deficiency (ZD6) compared to a control diet on the enzymatic cleavage and processing of prepro-TRH to form TRH have been studied in the hypothalamus, brain, and pituitary of young adult male Sprague-Dawley rats. Reverse phase high pressure liquid chromatography (HPLC) revealed that TRH was the major TRH-IR component of the hypothalamus, brain and pituitary. The effect of zinc deficiency on the TRH-Gly-IR HPLC profile of rat brain was to reduce selectively the are of the peaks for TRH-Gly and other low molecular weight pro-TRH peptide fragments with a C-terminal Gly compared to the corresponding TRH-Gly-IR peaks of the control group. We conclude that the processing of prepro-TRH to form TRH is zinc dependent via posttranslational processing enzymes such as carboxypeptidase H.  相似文献   

5.
Studies were conducted to determine the effects of zinc deficiency and excess zinc intake on the relative65Zn-binding activities of metallothionein (MT) and low-molecular-weight zinc-binding ligand (LMW-ZBL) in vitro and in vivo. Zinc-binding ligands of small intestine from four groups, each of five rats (normal, zinc-deficient, excess zinc injected, and excess zinc given orally), were separated by column chromatography on Sephadex G-75. The ratio of65Zn binding activities of MT to LMW-ZBL (MT/LMW-ZBL) in zinc-deficient rats was decreased both in vitro and in vivo compared to the control. When excess zinc was administered orally,65Zn-binding activity of MT was low in vitro and substantially increased in vivo. However, when excess zinc was injected intraperitoneally,65Zn-binding activity of MT in vitro greatly increased, but65Zn-binding activities of both MT and LMW-ZBL were significantly reduced in vivo as compared to the control. Based onA 280 readings of isolated MT and densities of protein bands in disc gel electrophoresis, the65Zn-binding activity of MT in vitro appeared to be proportional to the MT content. Hence, these data indicate that oral administration of excess zinc decreases MT whereas intraperitoneal injection of excess zinc stimulates its synthesis. Zinc deficiency has little to no effect on the intestinal MT metabolism. These results suggest that MT may be important in zinc secretion but not involved in zinc absorption; while LMW-ZBL participates both in zinc absorption and secretion.  相似文献   

6.
During deficient zinc intake, rats are liable to suffer zinc deficiency under the following conditions: higher protein diet, diet containing higher quality (higher nutritive value) protein, and higher dietary intake. This suggests that a higher protein nutritional status (rapid increase in body protein) in rats leads to a lower zinc nutritional status (higher zinc requirement). In contrast, it is expected that a lower protein nutritional status (lowered body protein biosynthesis) is not liable to result in a lower zinc nutritional status. Therefore, the effects of protein biosynthesis inhibitors on zinc status were studied. Actinomycin D and cycloheximide were administered to rats under a marginally zinc-deficient condition. The growth of rats was depressed and serum and femur zinc concentrations were increased by administration of protein biosynthesis inhibitors. The carcasses of rats administered protein synthesis inhibitors had a higher zinc/protein ratio than those of the respective pair-fed (calorically equivalent to the zinc-deficient group) rats. Results suggest that zinc deficiency in rats is mainly alleviated by decreased food intake with administration of protein synthesis inhibitors. Furthermore, protein biosynthesis inhibition alone alleviated zinc deficiency.  相似文献   

7.
Summary The role of serum albumin in the transport of orally administered L-tryptophan (Trp) into rat tissues was examined using analbuminemic and Sprague-Dawley (SD) rats with and without a-methyl-DL-tryptophan (AMT)-induced Trp depletion. Trp was orally administered to rats 16h after AMT or 0.85% NaCl administration, when liver tryptophan 2,3-dioxygenase and protein synthetic activities in AMT-treated rats were similar to those of 0.85% NaCl-treated rats. After oral Trp administration, regardless of the presence or absence of Trp depletion, free serum Trp concentrations were similar in the analbuminemic and SD rats, while total serum Trp concentrations were lower in analbuminemic rats than in SD rats. Although liver, brain, and muscle Trp concentrations after oral Trp administration under Trp depletion were lower in analbuminemic rats than in SD rats, the ratio of the liver Trp concentration in analbuminemic rats to that in SD rats was smaller than that of the brain or muscle Trp concentration. These results suggest that variations in serum albumin levels could affect the transport of orally administered Trp into the liver of rats with Trp depletion.  相似文献   

8.
Two groups of male Sprague-Dawley rats, one fed zinc-deficient diet, ad libitum, the other, pair-fed with the same diet, but given supplemental zinc in the drinking water (8 mg Zn++/ml) were studied. After ten weeks of diet, rats were exsanguinated and zinc and calmodulin concentrations in brain and testis were measured. Mean zinc concentration in testis was significantly decreased in rats fed zinc-deficient diet without supplemental Zn++, but mean zinc concentration in brain was not different. Similarly, mean calmodulin concentration in testis was decreased in rats fed zinc-deficient diet without supplemental Zn++ whereas mean calmodulin concentration in brain was not different. Distribution studies of zinc and calmodulin showed that both zinc and calmodulin were released more freely into soluble fractions of testis in rats fed zinc-deficient diet without supplemental Zn++. These results indicate, for the first time in in vivo studies, that zinc influences the calmodulin content of testis.  相似文献   

9.
In rats, zinc deficiency has been reported to result in elevated hepatic methionine synthase activity and alterations in folate metabolism. We investigated the effect of zinc deficiency on plasma homocysteine concentrations and the distribution of hepatic folates. Weanling male rats were fed ad libitum a zinc-sufficient control diet (382.0 nmol zinc/g diet), a low-zinc diet (7.5 nmol zinc/g diet), or a control diet pair-fed to the intake of the zinc-deficient rats. After 6 weeks, the body weights of the zinc-deficient and pair-fed control groups were lower than those of controls, and plasma zinc concentrations were lowest in the zinc-deficient group. Plasma homocysteine concentrations in the zinc-deficient group (2.3 +/- 0.2 micromol/L) were significantly lower than those in the ad libitum-fed and pair-fed control groups (6.7 +/- 0.5 and 3.2 +/- 0.4 micromol/L, respectively). Hepatic methionine synthase activity in the zinc-deficient group was higher than in the other two groups. Low mean percentage of 5-methyltetrahydrofolate in total hepatic folates and low plasma folate concentration were observed in the zinc-deficient group compared with the ad libitum-fed and pair-fed control groups. The reduced plasma homocysteine and folate concentrations and reduced percentage of hepatic 5-methyltetrahydrofolate are probably secondary to the increased activity of hepatic methionine synthase in zinc deficiency.  相似文献   

10.
Recent studies with rats force-fed zinc-deficient diets containing various types of fat failed to demonstrate a role of zinc in desaturation of linoleic acid. The present study was conducted to investigate the effect of zinc deficiency on desaturation of linoleic acid in rats that were initially force-fed fat-free diets to stimulate activity of desaturases. Therefore, rats were fed zinc-adequate and zinc-deficient fat-free diets for 6 d. After that period, the groups were divided and half of the rats continued feeding the fat-free diet for another 3.5 d whereas the other half was switched to a fat diet by supplementing the fat-free diet with 5% safflower oil. In order to assess desaturation of linoleic acid, fatty acid compositions of liver phosphatidylcholine, ethanolamine, and-serine were considered, particularly levels of individual (n-6) polyunsaturated fatty acids (PUFA). Levels of total and individual (n-6) PUFA were similar in zinc-adequate and zinc-deficient rats fed the fat-free diet throughout the experiment. Addition of 5% safflower oil increased levels of total and individual (n-6) PUFA in both zinc-adequate and zinc-deficient rats. However, total (n-6) PUFA in all types of phospholipids were higher in zinc-adequate rats than in zinc-deficient rats. Additionally, in zinc-deficient rats there were changes of (n-6) PUFA levels typical for impaired Δ5 and Δ6 desaturation: linoleic acid and dihomo-γ-linolenic acid were elevated; arachidonic acid, docosatetraenoic acid, and docosapentaenoic were lowered by zinc deficiency. Therefore, the study shows that zinc deficiency impairs desaturation of linoleic acid in rats force-fed fat-free diets and therefore supports results from former convential zinc deficiency experiments suggesting a role of zinc for desaturation of linoleic acid.  相似文献   

11.
Previous studies suggest a protective effect of vitamin D3 on zinc deficiency-induced insulin secretion and on pancreas β-cell function. The aim of this study was to investigate the effect of vitamin D on blood biochemical parameters, tissue zinc and liver glutathione in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin D3 for 27 days. At the end of the experiment, blood, femur, pancreas, kidney and liver samples were taken from all rats. The serum, femur, pancreas, kidney and liver zinc concentrations, liver glutathione, serum alkaline phosphatase activity, daily body weight gain and food intake were lower in the zinc-deficient rats in comparison with those receiving adequate amounts of zinc. These values were increased in the zinc-deficient group that was supplemented with vitamin D3. The serum total cholesterol, triglycerides, total protein, urea, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and blood glucose values were higher in rats fed a zinc adequate diet, but their concentrations were decreased by vitamin D3 supplementation. The serum total protein levels were not changed by zinc deficiency and vitamin D3 supplementation. These results suggest that vitamin D3 modulates tissue zinc, liver glutathione and blood biochemical values in diabetic rats fed a zinc-deficient diet.  相似文献   

12.
This study aimed to investigate the effects of a combination of a dairy product fermented by lactobacilli (DFL) and galactooligosaccharides (GOS) on mineral balances in growing rats with hypochlorhydria induced by a proton pump inhibitor (PPI). Three-week-old male rats were assigned to receive one of six diets: a control diet, control diets containing 1.6 or 5.0 % GOS, a DFL diet and DFL diets containing 1.6 or 5.0 % GOS for 9 days. From day 5 of the feeding period, half of the rats fed with control diets were subcutaneously administered with saline, whereas the remaining rats were administered with PPI for 5 days. Calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe) and zinc (Zn) balances were determined from days 6 to 9. PPI administration significantly decreased the apparent absorption of Ca and Fe and increased urinary P excretion, resulting in decreased Ca, Fe and P retention. GOS dose-dependently increased the apparent absorption of Ca, Mg and Fe and urinary Mg excretion and decreased urinary P excretion. DFL significantly increased the apparent absorption of Ca and Mg and urinary Mg excretion. The combination of DFL and GOS additively affected these parameters, resulting in increased Ca, P and Fe retention, and it further increased the apparent absorption and retention of Zn at 5.0 % GOS. In conclusion, the combination of DFL and GOS improves Ca, P and Fe retention in an additive manner and increases the Zn retention in growing rats with hypochlorhydria induced by PPI.  相似文献   

13.
At physiological levels, zinc and various hormones affect each other reciprocally. Reduction in zinc levels in pinealectomized rats suggests the relation between zinc and melatonin. The effect of both zinc deficiency and supplementation on plasma melatonin levels in rats were investigated in this study. The study was done in Sel?uk University, Experimental Medicine Research and Application Center. Twenty-four adult male Sprague Dawley rats were divided into 3 groups. Eight rats were fed with zinc-deficient diet. Zinc supplementation was administered intaperitoneally to 8 rats. The remaining 8 rats were used as controls. All rats sacrificed 3 weeks later. Plasma melatonin and zinc levels were determined. The plasma zinc levels of the zinc-supplemented group were higher than those of the other groups as expected (P<0.01). Similarly, the melatonin levels in the zinc-supplemented group were higher than those in the other groups. A significant decrease was observed in melatonin levels of the zinc-deficient group compared to the control and zinc-supplemented group (P<0.01). The results of this study suggest that zinc deficiency decreases the melatonin levels and zinc supplementation may increase the plasma melatonin levels in rats.  相似文献   

14.
ObjectivesZinc, which is found in high concentrations in the β-cells of the pancreas, is also a critical component for the endocrine functions of the pancreas. SLC30A8/ZnT8 is the carrier protein responsible for the transport of zinc from the cytoplasm to the insulin granules. The aim of this study was to investigate how dietary zinc status affects pancreatic beta cell activation and ZnT8 levels in infant male rats born to zinc-deficient mothers.MethodsThe study was performed on male pups born to mothers fed a zinc-deficient diet. A total of 40 male rats were divided into 4 equal groups. Group 1: In addition to maternal zinc deficiency, this group was fed a zinc-deficient diet. Group 2: In addition to maternal zinc deficiency, this group was fed a standard diet. Group 3: In addition to maternal zinc deficiency, this group was fed a standard diet and received additional zinc supplementation. Group 4: Control group. Pancreas ZnT8 levels were determined by ELISA method and insulin-positive cell ratios in β-cells by immunohistochemistry.ResultsThe highest pancreatic ZnT8 levels and anti-insulin positive cell ratios in the current study were obtained in Group 3 and Group 4. In our study, the lowest pancreatic ZnT8 levels were obtained in Group 1 and Group 2, and the lowest pancreatic anti-insulin positive cell ratios were obtained in Group 1.ConclusionThe results of the present study; in rats fed a zinc-deficient diet after maternal zinc deficiency has been established shows that ZnT8 levels and anti-insulin positive cell ratios in pancreatic tissue, which is significantly suppressed, reach control values with intraperitoneal zinc supplementation.  相似文献   

15.
Objectives: Obestatin has been initially characterized as a new peptide derived from the ghrelin precursor, which suppresses food intake and inhibits the orexigenic and prokinetic actions of ghrelin when injected peripherally or centrally in lean mice. However, reproducing these data remains controversial. Reasons for the disparity may be the use of different doses, routes, and animal models. We aimed to investigate the effects of peripheral and intracisternal (IC) injection of obestatin on feeding, gastric motility, and blood glucose in rats as well as in diet‐induced obese (DIO) mice. Research Methods and Procedures: Food intake and gastric emptying of a semi‐liquid caloric meal were measured after intraperitoneal (IP) injection of obestatin in rats and DIO mice. Gastric phasic motility and blood glucose were monitored in urethane‐anesthetized rats after IC or intravenous (IV) injection of obestatin. Results: Obestatin injected intraperitoneally at doses ranging from 0.1 to 3 mg/kg influenced neither acute food intake nor gastric emptying in rats. Obestatin injected intravenously at 0.3 or 3 mg/kg and IC at 7.5 or 30 µg/rat modified neither fasted gastric phasic motility nor blood glucose levels, while ghrelin (30 µg/kg, IV) increased and vagotomy suppressed gastric motility, and an oligosomatostatin analog (3 µg/rat, IC) decreased blood glucose. Obestatin, injected intraperitoneally (0.3 mg/kg) in DIO mice, did not alter feeding response to a fast, while urocortin 1 (10 µg/kg, IP) induced a 73.3% inhibition at 2 hours. Discussion: Our data demonstrate that peripheral administration of obestatin did not modify food intake in rats or obese mice or gastric motor function in rats.  相似文献   

16.
The effect of dietary zinc deficiency on the mossy fiber zinc content of the rat hippocampus was investigated using PIXE (Particle Induced X-Ray Emission) spectroscopy. Using the proton microbeam (60 X 60 microns), 2 mm line-scans were made on hippocampal sections and the data were expressed as absolute zinc concentrations. Values of 55 and 136 ppm (dry weight) were found for the mean background zinc level and the maximum mossy fiber zinc level, respectively, in animals fed a control diet containing 50 ppm zinc. Treatment of these animals with dithizone caused about 50% reduction in the maximum mossy fiber zinc level. Feeding a zinc-deficient diet for 28 days did not cause a decrease in the mossy fiber zinc level, however, feeding the zinc-deficient diet for 90 days reduced the maximum mossy fiber zinc level by about 30%. The results are discussed in relation to the behavioral abnormalities that have been observed in zinc-deficient animals.  相似文献   

17.
Primeaux SD 《Peptides》2011,32(6):1270-1275
Pyroglutamylated arginine-phenylalanineamide peptide (QRFP) is a neuropeptide involved in feeding behavior. Central administration of QRFP selectively increases the intake of a high fat diet in male rats. QRFP administration also stimulates the hypothalamic-pituitary-gonadal axis via gonadotrophin-releasing hormone in male and female rats. Prepro-QRFP mRNA is expressed in localized regions of the mediobasal hypothalamus which are abundant in neurotransmitters, neuropeptides and receptor systems important for food intake regulation and reproductive behaviors. The current experiments were conducted to investigate the effects of centrally administered QRFP-26 on the intake of a high fat diet (HFD, 60% kcal from fat) in female rats and to investigate alterations in hypothalamic prepro-QRFP and its receptors, GPR130a and GPR103b, mRNA levels over the estrous cycle. In Experiment 1, female rats were administered QRFP-26 (intracerebroventricular; 0.3 nmol, 0.5 nmol, 1.0 nmol) in rats consuming either a HFD or a low fat diet. All doses of QRFP-26 selectively increased the intake of the HFD in female rats. These data suggest that QRFP-26 regulates the intake of energy dense foods in female rats, which is similar to previous findings in male rats. In Experiment 2, hypothalamic levels of prepro-QRFP mRNA and its receptors were assessed during diestrus, proestrus, or estrus. The level of prepro-QRFP mRNA in the ventromedial/arcuate nucleus (VMH/ARC) of the hypothalamus was increased during proestrus, which suggests that endogenous estrogen levels regulate QRFP expression in the VMH/ARC. These data suggest that QRFP may play a role in coordinating feeding behaviors with reproductive function when energy demand is increased.  相似文献   

18.
Metallothionein (MT) is important for heavy metals and free radical protection in the kidney. MT is responsive to zinc and primarily localized within the renal cortex. However, site-specific renal responses to dietary zinc repletion are understudied. The objective of this study was to examine the effects of dietary zinc deficiency and repletion on renal MT concentration and immunolocalization in rats. Weanling male Sprague Dawley rats were randomly assigned to either a zinc-deficient, zinc control, or pair-fed to zinc-deficient group. Half of the zinc-deficient and pair-fed rats were repleted with the control diet ad libitum for an additional 24 h. Renal tissue samples were assessed for total zinc, MT concentrations and MT immunostaining. Dietary zinc deficiency reduced renal zinc and MT concentrations, and attenuated intensity and localization of MT. Dietary zinc repletion for 24 h restored renal zinc and MT concentrations, the latter primarily in the proximal convoluted tubules of the cortex. Concentrations of renal MT, but not zinc, were elevated by diet restriction and MT (μg/mg protein) and partially normalized by 24 h diet repletion. In conclusion, renal MT modification due to zinc deficiency or diet restriction can be rapidly normalized in a site-specific manner with normal dietary zinc intake. The results support a role for MT in kidney homeostasis, in particular at the level of the proximal tubules in the cortex. The speed of MT repletion may have clinical implications for dietary zinc in the treatment of acute and chronic renal pathology due to toxins and free radicals.  相似文献   

19.
We sought to investigate whether TSG suppressed the ICAM-1/VCAM-1 expression in dietary atherosclerotic rats and in Ox-LDL-induced U937 cells. For this purpose, 60 male Sprague–Dawley rats were randomly-and-equally divided into six groups. Atherosclerosis was induced by feeding rats a hyperlipidemic diet. TSG (120, 60 or 30 mg/kg/day) was administered by oral gavage. Simvastatin (2 mg/kg/day) was administered as positive control whereas physiological saline (0.9 % NaCl) served as untreated control. After 12 weeks, rats were euthanized by ethyl carbonate (1,200 mg/kg) and aortic wall samples were collected. Besides, U937 cells were stimulated for 48 h by Ox-LDL (80 μg/mL) with and without TSG (120, 60, 30 μg/L) or simvastatin (100 μg/L). ICAM-1/VCAM-1 mRNA expression was determined by RT-PCR and protein expression was detected by immunohistochemistry and/or western blotting. The data show that ICAM-1/VCAM-1 mRNA/protein expression was significantly enhanced in atherosclerotic aortas compared with normal diet group. Ox-LDL-induced ICAM-1/VCAM-1 mRNA/protein expression in U937 cells. Importantly, TSG significantly inhibited ICAM-1/VCAM-1 expression in atherosclerotic aortas in a dose-dependent manner. TSG-pretreatment also inhibited ICAM-1/VCAM-1 expression in Ox-LDL-induced U937 cells. Therefore, we concluded that TSG suppressed the expression of adhesion (ICAM-1/VCAM-1) molecules both in vivo (in aortic wall of dietary atherosclerotic rats) and in vitro (U937 cells).  相似文献   

20.
Zinc deficiency induces a striking reduction of food intake in animals. To elucidate the mechanisms for this effect, two studies were connectedly conducted to determine the effects of peripheral administration of zinc on food intake in rats fed the zinc-adequate or zinc-deficient diets for a 3-week period. In study 1, two groups of male Sprague-Dawley rats were provided diets made either adequate (ZA; 38.89 mg/kg) or deficient (ZD; 3.30 mg/kg) in zinc. In study 2, after feeding for 3 weeks, both ZA and ZD groups received intraperitoneal (IP) injection of zinc solution with three levels (0.5, 1.0, and 2.0 mug zinc/g body weight, respectively) and cumulative food intake at 0.5, 1, 2, 4, and 24 h, and plasma hormones concentrations were measured. The results in study 1 showed rats fed the ZD diets revealed symptoms of zinc deficiency, such as sparse and coarse hair, poor appetite, susceptibility to surroundings, lethargy, and small movements. Zinc concentrations in serum, femur, and skeletal muscle of rats fed the ZD diets declined by 26.58% (P < 0.01), 27.32% (P < 0.01), and 24.22% (P < 0.05), respectively, as compared with ZA control group. These findings demonstrated that rat models with zinc deficiency and zinc adequacy had been fully established. The results in study 2 showed that IP administration of zinc in both ZA and ZD rats did not influence food intake at each time points (P > 0.05), although zinc deficiency suppressed food intake. Plasma neuropeptide Y (NPY) was higher, but insulin and glucagon were lower in response to zinc deficiency or zinc administration by contrast with their respective controls (P < 0.05). Leptin, T3, and T4 concentrations were uniformly decreased (P < 0.05) in rats fed the ZD diets in contrast to ZA diets; however, no differences (P > 0.05) were observed during zinc injection. Calcitonin gene-related peptide was unaffected (P > 0.05) by either zinc deficiency or zinc administration. The present studies suggested that zinc administration did not affect short-term food intake in rats even in the zinc-deficient ones; the reduced food intake induced by zinc deficiency was fprobably associated with the depression in thyroid hormones. The results also indicated that NPY and insulin varied conversely during the control of food intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号