首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maesopsis eminii is referred to as one of the most widely distributed African tree species. However, its occurrence in Africa has never been mapped and little is known as to how this species can sustain in different environments. To gain insight into Maesopsis’ ecology, we (i) made a synthesis of its functional trait data from the literature, (ii) investigated phenological patterns using data on four M. eminii trees from Yangambi, DR Congo, (iii) assessed an empirical provenance trial from Uganda on 600 Maesopsis trees and (iv) synthesized geo‐referenced point location maps of Maesopsis entailing WorldClim precipitation and temperature and FAO soils, rainfall and ecological zones for Africa. We found M. eminii to straddle the equator equidistantly in terms of latitude (10.97°N and 10.98°S) covering five forest types where twenty soil types and variable rainfall regimes support complex plant biodiversity. Maesopsis eminii was, however, largely concentrated in the tropical rainforest ecosystem which contains fertile Orthic Ferralsol soils. More than 97% of the point locations were found where annual precipitation was >1000 mm, and 82% occurred where average annual temperature was 22–28°C. Its functional traits, phenology and provenance trial findings explained its occurrence in Africa.  相似文献   

2.
中国东北地区主要植被类型NDVI变化与气候因子的关系   总被引:38,自引:2,他引:38  
张军  葛剑平  国庆喜 《生态学报》2001,21(4):522-527
利用1982~1992年时间序列的NOAA/AVHRR8km×8km分辨率的归一化植被指数(Normalizeddifferencevegetationindex,NDVI),将东经120°~135°、北纬40°~55°区域的土地覆盖类型分为10类。然后研究了各类型的NDVI年平均值的变化规律。结合该地区的19个气象站1982~1992年的年平均气温、年最高温度、年最低温度、年降水量和年相对湿度研究了各类型NDVI年平均值的变化与气候因子之间的关系,进一步阐明了气候因子是NDVI动态变化的主要原因。  相似文献   

3.
Symbiotic nitrogen (N)‐fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N‐fixation enzyme activity and physiology, comparatively little is known about how climate influences N‐fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N‐fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N‐fixing trees? We found that rhizobial N‐fixing trees were nearly absent below 15°C MAT, but above 15°C MAT, they increased in abundance as temperature rose. We found no evidence for a hump‐shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5–10°C MAT and were least abundant in areas with intermediate precipitation. Next, we used a climate‐envelope approach to project how N‐fixing tree relative abundance might change in the future. The climate‐envelope projection showed that rhizobial N‐fixing trees will likely become more abundant in many areas by 2080, particularly in the southern USA and western Mexico, due primarily to rising temperatures. Projections for actinorhizal N‐fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N‐fixing tree abundance in much of the USA and Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N‐fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models.  相似文献   

4.
Biological nitrogen (N) fixation (BNF), an important source of N in terrestrial ecosystems, plays a critical role in terrestrial nutrient cycling and net primary productivity. Currently, large uncertainty exists regarding how nutrient availability regulates terrestrial BNF and the drivers responsible for this process. We conducted a global meta‐analysis of terrestrial BNF in response to N, phosphorus (P), and micronutrient (Micro) addition across different biomes (i.e, tropical/subtropical forest, savanna, temperate forest, grassland, boreal forest, and tundra) and explored whether the BNF responses were affected by fertilization regimes (nutrient‐addition rates, duration, and total load) and environmental factors (mean annual temperature [MAT], mean annual precipitation [MAP], and N deposition). The results showed that N addition inhibited terrestrial BNF (by 19.0% (95% confidence interval [CI]: 17.7%?20.3%); hereafter), Micro addition stimulated terrestrial BNF (30.4% [25.7%?35.3%]), and P addition had an inconsistent effect on terrestrial BNF, i.e., inhibiting free‐living N fixation (7.5% [4.4%?10.6%]) and stimulating symbiotic N fixation (85.5% [25.8%?158.7%]). Furthermore, the response ratios (i.e., effect sizes) of BNF to nutrient addition were smaller in low‐latitude (<30°) biomes (8.5%?36.9%) than in mid‐/high‐latitude (≥30°) biomes (32.9%?61.3%), and the sensitivity (defined as the absolute value of response ratios) of BNF to nutrients in mid‐/high‐latitude biomes decreased with decreasing latitude (p ≤ 0.009; linear/logarithmic regression models). Fertilization regimes did not affect this phenomenon (p > 0.05), but environmental factors did affect it (p < 0.001) because MAT, MAP, and N deposition accounted for 5%?14%, 10%?32%, and 7%?18% of the variance in the BNF response ratios in cold (MAT < 15°C), low‐rainfall (MAP < 2,500 mm), and low‐N‐deposition (<7 kg ha?1 year?1) biomes, respectively. Overall, our meta‐analysis depicts a global pattern of nutrient impacts on terrestrial BNF and indicates that certain types of global change (i.e., warming, elevated precipitation and N deposition) may reduce the sensitivity of BNF in response to nutrient enrichment in mid‐/high‐latitude biomes.  相似文献   

5.
The impact of climate change on N leaching from hill land plant/soil systems was investigated using a transplant technique involving the movement of intact lysimeter cores of three contrasting soil types down an altitudinal gradient at Great Dun Fell, Cumbria. Air and soil temperatures and precipitation were monitored at four elevations down an altitudinal transect using automatic weather stations for a period of two years. The altitudinal sequence of air temperature followed the anticipated pattern, providing mean annual temperatures at the four locations of 3.4, 5.0, 6.3 and 8.1 °C. Lapse rates of both mean air and soil temperatures over the altitudinal range 171–845 m were 6.6 (1993) and 7.0 °C km–1 (1994). Soil monthly temperature gradients for a particular soil type for each of the two years showed a seasonal range of 6.0 and 7.4 °C km–1, respectively, and for air temperature of 4.3 and 3.1 °C km–1. Precipitation gradients showed the expected general increase with altitude, but were less predictable. Inorganic nitrogen leaching was studied in lysimeter leachates with climatic amelioration resulting in dramatic reductions in leachate nitrate concentrations and associated total concentrations of inorganic nitrogen. Decreases in leachate nitrate concentrations were observed for all three soil types studied. Soils receiving supplemented rainfall also showed decreased N concentrations, suggesting that temperature was the main controlling factor responsible for the observed reductions. Increased N uptake by the vegetation, in response to the increases in temperature, is considered to be critical in controlling soil solution chemistry at these sites.  相似文献   

6.
Aim Widespread reports of disappearing tree species and senescing savanna parklands in the Sahel have generated a vigorous debate over whether climate change or severe human and livestock pressure is principally responsible. Many of the tree taxa in decline are closely associated with human settlement and farming, suggesting that the parkland ecosystem may not be a natural vegetation assemblage. The aim of this study is to assess the possibility that human activities promoted the spread of taxa with edible fruit into dry Sudano‐Sahelian areas during high‐rainfall periods in the climate cycle. Location West African savannas (Mali, Burkina Faso, Ghana, Togo, Benin). Methods Cultivated savanna parklands and adjacent forests and transitional landscapes were inventoried at 27 sites in five countries. All trees with basal diameters > 10 cm were counted within 500‐m2 belt transects. Species composition and abundance were contrasted between three landscape classes to assess the degree of influence exerted by traditional human management. Twentieth century rainfall data were averaged for two sets of weather stations encompassing the north–south range of typical parkland tree species. Rainfall trends were used to evaluate the putative impact of climate change on edible and/or succulent fruit species at the northern limit of the parkland savanna zone. Results Species composition and spatial distribution data indicate that the parkland ecosystem is significantly shaped by human activities. Indigenous land management favours edible‐fruit‐yielding taxa from the wetter Sudanian and Guinean vegetation zones over Sahelian species. Rainfall isohyets at the northern range limits of parkland species shifted southwards in the late 20th century, crossing the critical 600‐mm mean annual rainfall threshold for Sudanian flora. Relict vegetation and historical records indicate that the Sudanian parkland system extended in the past to near 15° N latitude in middle West Africa, compared with 13.5° N today. Main conclusions The current loss of mesic trees in the Sudano‐Sahel zone appears to be driven by the sharp drop in rainfall since the 1960s, which has effectively stranded anthropogenically distributed species beyond their rainfall tolerance limits.  相似文献   

7.
Knowledge of the latitudinal patterns in biotic interactions, and especially in herbivory, is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. We used sap‐feeding insects as a model group to test the hypotheses that the strength of plant–herbivore interactions in boreal forests decreases with latitude and that this latitudinal pattern is driven primarily by midsummer temperatures. We used a replicated sampling design and quantitatively collected and identified all sap‐feeding insects from four species of forest trees along five latitudinal gradients (750–1300 km in length, ten sites in each gradient) in northern Europe (59 to 70°N and 10 to 60°E) during 2008–2011. Similar decreases in diversity of sap‐feeding insects with latitude were observed in all gradients during all study years. The sap‐feeder load (i.e. insect biomass per unit of foliar biomass) decreased with latitude in typical summers, but increased in an exceptionally hot summer and was independent of latitude during a warm summer. Analysis of combined data from all sites and years revealed dome‐shaped relationships between the loads of sap‐feeders and midsummer temperatures, peaking at 17 °C in Picea abies, at 19.5 °C in Pinus sylvestris and Betula pubescens and at 22 °C in B. pendula. From these relationships, we predict that the losses of forest trees to sap‐feeders will increase by 0–45% of the current level in southern boreal forests and by 65–210% in subarctic forests with a 1 °C increase in summer temperatures. The observed relationships between temperatures and the loads of sap‐feeders differ between the coniferous and deciduous tree species. We conclude that climate warming will not only increase plant losses to sap‐feeding insects, especially in subarctic forests, but can also alter plant‐plant interactions, thereby affecting both the productivity and the structure of future forest ecosystems.  相似文献   

8.
Aim To investigate broad‐scale patterns of plant leaf ash content and their possible causes in China. Location Mainland China and Hainan island, with the geographic ranges for the data used from 18.7° N to 49.2° N and 76.0° E to 128.3° E. Methods By analysing a data set of 2022 leaf samples, involving 704 species of terrestrial plants. Results Leaf ash content increases with increasing latitude at an average rate of 2.7 mg ash g?1 dry weight per degree latitude from south to north of China. Plant functional group shows a more powerful influence on the spatial variation in leaf ash than soil pH and climate. Fast‐growing species or those with leaves with a short life span have higher leaf ash than slow‐growing species or those with a long leaf life span. Plants from alkaline soils have higher leaf ash than those from acid soils (39.5 mg g?1 increase in leaf ash content per unit increase of pH). Increasing precipitation significantly reduces leaf ash (with a mean rate of 4.8 mg g?1 for every 100 mm rainfall), whereas the effect of temperature appears to be nonlinear. Main conclusions This study shows a significant latitudinal trend in leaf ash content in China. This geographic pattern is possibly shaped by the floral, edaphic and climatic factors that control the biogeochemical cycling of plant minerals. The results suggest that leaf ash content is a useful biogeographic indicator that can be used to explore the complex interactions between plants and the environment.  相似文献   

9.
10.
Aim Climbing plants are characterized by long, wide vessel elements, which may be vulnerable to cold‐ or drought‐induced embolism. However, the difference in vulnerability between lianas (woody climbing plants) and vines (herbaceous climbing plants) has not yet been reported. Here we hypothesize that both lianas and vines are more sensitive to variations in water and temperature than are self‐supporting plants. Consequently, the proportions of lianas and vines in flora are expected to decline significantly along geographical and environmental gradients. Location China. Methods A unique dataset describing 82 floras in China was examined. The proportion of lianas in the flora (LPF) and the proportion of vines in the flora (VPF) were calculated independently. The proportion of the climbing plants in total spermatophyte flora (CPF) was also calculated. LPF and VPF were compared along latitudinal, mean annual rainfall (Rain), and mean January temperature (T1) gradients. Local linear regression analyses showed the changing tendencies of LPF and VPF. Prediction models of LPF using geographical and environmental factors were studied in some subranges. Results (1) LPF was highest in the tropics (13.8% on average), decreased linearly with increasing latitude within the latitude < 42 °N subrange, and reached < 1% north of 42 °N in China. VPF fluctuated slightly from tropical (4.7%), to subtropical (4.2%) to warm temperate (4.5%) regions, but declined significantly in temperate (3.2%) and dry (1.5%) zones in China. (2) LPF decreased significantly with decreasing rainfall, and decreased significantly with decreasing T1 in areas where T1 > −10 °C. In contrast, VPF tended to be constant in areas where T1 > −5 °C or Rain > 1000 mm, and declined under extreme water or temperature stresses. (3) Predictions of LPF using Rain and T1 in areas where T1 > −10 °C, and using latitude and altitude within the latitude < 42 °N subrange were both reliable. According to the geographical model for LPF and a constant VPF, tropical Asian forests would have a LPF as high as 25.4% and the highest CPF would be c. 30%. Conclusions We conclude that liana diversity is more sensitive to temperature and water availability than that of vines and other plants. Geographical and environmental gradients affected LPF but not VPF. Shorter life spans and underground nutrient storage may be effective strategies adopted by vines to avoid drought and cold stresses.  相似文献   

11.
Coffea canephora (robusta coffee) is the most heat‐tolerant and ‘robust’ coffee species and therefore considered more resistant to climate change than other types of coffee production. However, the optimum production range of robusta has never been quantified, with current estimates of its optimal mean annual temperature range (22–30°C) based solely on the climatic conditions of its native range in the Congo basin, Central Africa. Using 10 years of yield observations from 798 farms across South East Asia coupled with high‐resolution precipitation and temperature data, we used hierarchical Bayesian modeling to quantify robusta's optimal temperature range for production. Our climate‐based models explained yield variation well across the study area with a cross‐validated mean R2 = .51. We demonstrate that robusta has an optimal temperature below 20.5°C (or a mean minimum/maximum of ≤16.2/24.1°C), which is markedly lower, by 1.5–9°C than current estimates. In the middle of robusta's currently assumed optimal range (mean annual temperatures over 25.1°C), coffee yields are 50% lower compared to the optimal mean of ≤20.5°C found here. During the growing season, every 1°C increase in mean minimum/maximum temperatures above 16.2/24.1°C corresponded to yield declines of ~14% or 350–460 kg/ha (95% credible interval). Our results suggest that robusta coffee is far more sensitive to temperature than previously thought. Current assessments, based on robusta having an optimal temperature range over 22°C, are likely overestimating its suitable production range and its ability to contribute to coffee production as temperatures increase under climate change. Robusta supplies 40% of the world's coffee, but its production potential could decline considerably as temperatures increase under climate change, jeopardizing a multi‐billion dollar coffee industry and the livelihoods of millions of farmers.  相似文献   

12.
Nitrous oxide (N2O) emissions are subject to intra‐ and interannual variation due to changes in weather and management. This creates significant uncertainties when quantifying estimates of annual N2O emissions from grazed grasslands. Despite these uncertainties, the majority of studies are short‐term in nature (<1 year) and as a consequence, there is a lack of data on interannual variation in N2O emissions. The objectives of this study were to (i) quantify annual N2O emissions and (ii) assess the causes of interannual variation in emissions from grazed perennial ryegrass/white clover grassland. Nitrous oxide emissions were measured from fertilized and grazed perennial ryegrass/white clover grassland (WC) and from perennial ryegrass plots that were not grazed and did not receive N input (GB), over 4 years from 2008 to 2012 in Ireland (52°51′N, 08°21′W). The annual N2O‐N emissions (kg ha?1; mean ± SE) ranged from 4.4 ± 0.2 to 34.4 ± 5.5 from WC and from 1.7 ± 0.8 to 6.3 ± 1.2 from GB. Interannual variation in N2O emissions was attributed to differences in annual rainfall, monthly (December) soil temperatures and variation in N input. Such substantial interannual variation in N2O emissions highlights the need for long‐term studies of emissions from managed pastoral systems.  相似文献   

13.
Aim We analysed body‐size variation in relation to latitude, longitude, elevation and environmental variables in Ctenomys (tuco‐tucos), subterranean rodents in the Ctenomyidae (Caviomorpha). We tested the existence of inter‐ and intraspecific size clines to determine if these rodents follow Bergmann's rule, to compare intra‐ and interspecific size trends and to assess the relevance of the subterranean lifestyle on these trends. Location South America, south of 15° latitude. Methods This paper is based on 719 specimens of tuco‐tucos from 133 localities of Argentina, Bolivia, Chile, Paraguay, Peru and Uruguay, representing 47 named species and 32 undescribed forms. Intraspecific analyses were performed for Ctenomys talarum Thomas, 1898 and the Ctenomys perrensi Thomas, 1896 species complex. Head and body length and weight were used for estimating body size. Geographical independent variables included latitude, longitude and altitude. Environmental independent variables were mean minimal and maximal monthly temperature, mean annual temperature, mean minimal and maximal precipitation, and total annual precipitation. To estimate seasonality, the annual variability of the climatic factors was calculated as their coefficients of variation and the difference between maximum and minimum values. Mean annual actual evapotranspiration (AET), and mean annual, January (summer) and July (winter) potential evapotranspiration (PET) values were also calculated for each locality, as well as annual, summer and winter water balance (WB). Statistical analyses consisted of simple and multiple regression and nonparametric correlation. Results Body size of Ctenomys decreases interspecifically from 15°00′ S to 48°15′ S and from 56°33′ W to 71°46′ W, and is positively correlated with ambient temperature and precipitation. The best predictors of body size according to multiple regression analyses were mean annual temperature, the difference between mean maximum and minimum annual temperatures, annual PET, the difference between summer and winter PET, and annual and winter water balance. These patterns are repeated, but not identically, at a smaller geographical scale within the species C. talarum and the superspecies C. perrensi. Main conclusions Tuco‐tucos follow the converse to Bergmann's rule at the interspecific level. At the intraspecific level some parallel trends were observed, but the smaller scale of these analyses, involving a very reduced variation of environmental factors, necessitates caution in interpreting results. The subterranean lifestyle probably insulates these rodents from the external temperature. The observed latitudinal body‐size gradients are more probably related to seasonality, ambient energy, primary productivity and/or intensity of predation.  相似文献   

14.
  • 1 We summarize fin whale Balaenoptera physalus catch statistics, sighting data, mark recoveries and acoustics data. The annual cycle of most populations of fin whales had been thought to entail regular migrations between high‐latitude summer feeding grounds and lower‐latitude winter grounds. Here we present evidence of more complex and varied movement patterns.
  • 2 During summer, fin whales range from the Chukchi Sea south to 35 °N on the Sanriku coast of Honshu, to the Subarctic Boundary (ca. 42 °N) in the western and central Pacific, and to 32 °N off the coast of California. Catches show concentrations in seven areas which we refer to as ‘grounds’, representing productive feeding areas.
  • 3 During winter months, whales have been documented over a wide area from 60 °N south to 23 °N. Coastal whalers took them regularly in all winter months around Korea and Japan and they have been seen regularly in winter off southern California and northern Baja California. There are also numerous fin whale sightings and acoustic detections north of 40 °N during winter months. Calves are born during the winter, but there is little evidence for distinct calving areas.
  • 4 Whales implanted with Discovery‐type marks were killed in whaling operations, and location data from 198 marked whales demonstrate local site fidelity, consistent movements within and between the main summer grounds and long migrations from low‐latitude winter grounds to high‐latitude summer grounds.
  • 5 The distributional data agree with immunogenetic and marking findings which suggest that the migratory population segregates into at least two demes with separate winter mating grounds: a western ground off the coast of Asia and an eastern one off the American coast. Members of the two demes probably mingle in the Bering Sea/Aleutian Islands area.
  • 6 Prior research had suggested that there were at least two non‐migratory stocks of fin whale: one in the East China Sea and another in the Gulf of California. There is equivocal evidence for the existence of additional non‐migratory groups in the Sanriku‐Hokkaido area off Japan and possibly the northern Sea of Japan, but this is based on small sample sizes.
  相似文献   

15.
Climate and biophysical regulation of terrestrial plant production and interannual responses to anomalous events were investigated using the NASA Ames model version of CASA (Carnegie–Ames–Stanford Approach) in a transient simulation mode. This ecosystem model has been calibrated for simulations driven by satellite vegetation index data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. Relatively large net source fluxes of carbon were estimated from terrestrial vegetation about 6 months to 1 year following El Niño events of 1983 and 1987, whereas the years 1984 and 1988 showed a drop in net primary production (NPP) of 1–2 Pg (1015 g) C from their respective previous years. Zonal discrimination of model results implies that the northern hemisphere low latitudes could account for almost the entire 2 Pg C decrease in global terrestrial NPP predicted from 1983 to 1984. Model estimates further suggest that from 1985 to 1988, the northern middle-latitude zone (between 30° and 60°N) was the principal region driving progressive increases in NPP, mainly by an expanded growing season moving toward the zonal latitude extremes. Comparative regional analysis of model controls on NPP reveals that although Normalized Difference Vegetation Index “greenness” can alone account for 30%–90% of the variation in NPP interannual anomalies, temperature or radiation loading can have a fairly significant 1-year lag effect on annual NPP at middle- to high-latitude zones, whereas rainfall amount and temperature drying effects may carry over with at least a 2-year lag time to influence NPP in semiarid tropical zones.  相似文献   

16.
In Mediterranean ecosystems, abiotic factors are known to affect vertebrate population dynamics, but little is known about how these factors affect population dynamics of parasites. We conducted a 9‐year investigation of the roles of temperature, precipitation, and vector abundance as determinants of transmission of the non‐native canine heartworm (Dirofilaria immitis), a dangerous parasite of pets, among coyotes (Canis latrans), an important reservoir, in north‐coastal California. Dates of heartworm transmission and total annual transmission were determined, respectively, from lengths and numbers of heartworms found in known‐age coyotes. Vector host‐seeking activity was assessed through weekly mosquito trapping. Within years, heartworm transmission occurred only when cumulative temperatures were sufficient to allow larval heartworms to develop to the infective stage (as predicted by an existing degree‐day model), and when suitable vectors were available. Most (95%) heartworms infected their hosts between 1 July and 14 September. The onset of transmission periods always occurred after the peak in vector host‐seeking activity and varied annually. Transmission periods ended before temperatures became limiting due to absence of vectors. The timing of host‐seeking activity of the primary vector species, Ochlerotatus sierrensis, also was correlated with the onset of warming temperatures such that parasite and vector phenology were synchronized. For this reason (partly), the variation in timing of seasonal warming had no detectable effect on total annual transmission. Abundance of host‐seeking Oc. sierrensis was positively correlated with annual precipitation, and annual heartworm transmission was positively correlated with abundance of host‐seeking Oc. sierrensis. Annual transmission also was positively correlated with abundance of a less numerous vector species, Anopheles punctipennis, and was directly correlated with precipitation. This study demonstrates that multiannual variability in temperature, which affects seasonality of transmission, has little effect on annual transmission, but that precipitation is a driving force determining annual transmission. These findings imply that in California, and possibly other Mediterranean climate zones, it is especially important to preventively treat pets in summers following high‐rainfall winters.  相似文献   

17.
Broad-scale geographical patterns in local stream insect genera richness   总被引:1,自引:0,他引:1  
Comprehensive global studies of stream invertebrate assemblages are rare and have produced contradictory results. To address this shortcoming, we compiled data from 495 published estimates of local genera richness for three orders of stream‐dwelling insects (Ephemeroptera, Plecoptera, Trichoptera) from throughout the world and used these data to describe global geographic patterns in stream insect genera richness and to address two questions: 1) does local stream insect richness vary more with regional historical factors or with local ecological factors?, and 2) to what extent have streams converged in the number of taxa they support?
Maximum genera richness varied sharply across the range of latitude examined from the south to north poles for all three orders of aquatic insects. Ephemeroptera richness showed 3 peaks (~30°S, 10°N, and 40°N) with highest richness near 5–10°N and 40°N latitude. Plecoptera richness was distinctly highest at ~40°N latitude with a similar peak at 40°S latitude. Trichoptera richness showed less latitudinal variation than the other taxa but was slightly higher near the equator and at 40°N and S latitude than at other latitudes. Genera richness generally declined with increasing elevation, except for Plecoptera. Maximum genera richness increased steadily with a measure of regional terrestrial net primary production and declined sharply with a measure of hydrologic disturbance for all orders. Richness varied widely among both biogeographical realms and biomes, although ca 2 times as much variation in richness was associated with biome as biogeographic realm. Richness for each order was highest in different biogeographic realms, but all orders had highest richness in broadleaf forest biomes. These latter results imply that spatial variation in local richness of stream insects is more strongly affected by contemporary ecological factors than by historical biogeography and that maintenance of intact forested landscapes may be critical to the conservation of stream invertebrate faunas.  相似文献   

18.
The effect of incubation temperature on embryonic development and offspring traits has been widely reported for many species. However, knowledge remains limited about how such effects vary across populations. Here, we investigated whether incubation temperature (26, 28, and 30 °C) differentially affects the embryonic development of Asian yellow pond turtle (Mauremys mutica) eggs originating from low‐latitude (Guangzhou, 23°06′N) and high‐latitude (Haining, 30°19′N) populations in China. At 26 °C, the duration of incubation was shorter in the high‐latitude population than in the low‐latitude population. However, this pattern was reversed at 30 °C. As the incubation temperature increased, hatching success increased in the low‐latitude population but slightly decreased in the high‐latitude population. Hatchlings incubated at 30 °C were larger and righted themselves more rapidly than those incubated at 26 °C in the low‐latitude population. In contrast, hatchling traits were not influenced by incubation temperature in the high‐latitude population. Overall, 30 °C was a suitable developmental temperature for embryos from the low‐latitude population, whereas 26 and 28 °C were suitable for those from the high‐latitude population. This interpopulation difference in suitable developmental temperatures is consistent with the difference in the thermal environment of the two localities. Therefore, similarly to posthatching individuals, reptile embryos from different populations might have evolved diverse physiological strategies to benefit from the thermal environment in which they develop. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 35–43.  相似文献   

19.
我国金花茶组植物的地理分布   总被引:12,自引:0,他引:12  
苏宗明  莫新礼   《广西植物》1988,(1):75-81
世界产金花茶组植物22种,其中我国20种,特有18种,仅产广西。其分布区在北纬21°30′—23°40′,东经106°40′—108°35′,北界基本上与广西北热带半常绿季雨林、湿润雨林地带北界吻合。该组植物分布于石灰(岩)土的13种,红壤的7种。它们出现的地段比较固定,天然林下,沟谷或溪边处,相对高度10—15米;峰丛圆洼地底部和荫蔽的坡面下部。该组植物个体最多的地区(几何中心)一个在防城县,一个在龙州县;种类最多的地区(最大变异中心)一个也在龙州县,9种,一个在扶绥县,7种。该分布区从南到北分化成六个小分区。其垂直分布一般在海拔700米以下。水平分布种的更替表现为:北纬21°31′为小瓣金花茶等五种;北纬22°10′—22°45′为鼻岗金花茶等八种更替;北纬22°50′为顶生金花茶等三种更替;北纬23°40′为平果金花茶更替。金花茶分布幅度最宽,可由北纬21°31′到22°55′。在土山,东西以东经107°30′为界,以东为金花茶等四种,以西为小瓣金花茶等二种。  相似文献   

20.
1. Ecologists often make predictions about community richness and diversity using climate variables that include seasonal precipitation totals and mean daily temperatures. While means and totals can be effective predictors to a certain extent, the complexities of faunal–climate relationships might be over‐simplified through the use of coarse‐grained variables. 2. The goal of this study was to investigate less commonly studied climate variables, including indices of intra‐annual variation in the timing and intensity of precipitation events that might be used to predict butterfly richness across an elevational gradient. Data from a long‐term, single‐observer dataset at four sites in California were examined with Bayesian model averaging and structural equation modelling. Species‐specific responses to climate were compared with community responses at each site. 3. At lower elevations, it was found that the relative importance of climate variables shifted towards temporal patterns of precipitation, including the timing of the first storm event and the annual number of precipitation events. Heterogeneity among sites was apparent in the importance of specific weather variables, and temporal trends (across years) were detected for a small number of variables. Species‐specific results paralleled those obtained from analysis of species richness, thus suggesting a commonality of response to climate across site‐specific assemblages. 4. Models were improved by inclusion of the Pacific Decadal Oscillation and El Niño‐Southern Oscillation indices, indicating that regional variables can profitably be included in faunal–climate relationship analyses. These results emphasise the need for researchers to examine climate variables beyond the most readily summarised means and totals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号