首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Patients with spinal cord injury (SCI) may or may not develop central neuropathic pain despite having cord lesions of apparently the same site, extension and nature. The consequences of the cord lesion in the central nervous system and the mechanisms underlying pain are unclear. In this study, we examined sensory detection and pain thresholds above injury level in 17 SCI patients with central neuropathic pain, in 18 SCI patients without neuropathic pain, and in 20 control subjects without injury and pain. The SCI pain group had significantly higher cold and warm detection thresholds compared with the SCI pain free group and controls and higher tactile detection thresholds compared with the SCI pain free group. No difference in pain or pain tolerance thresholds was seen among pain and pain free SCI patients. These data suggest changes in somatosensory function in dermatomes rostral to the segmental injury level linked to the presence of central neuropathic pain in SCI patients. The results are discussed in relation to current concepts of pain inhibitory and facilitating systems.  相似文献   

2.
Chronic neuropathic pain is a disabling condition observed in large number of individuals following spinal cord injury (SCI). Recent progress points to an important role of neuroinflammation in the pathogenesis of central neuropathic pain. The focus of the present study is to investigate the role of proinflammatory molecules IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 in chronic neuropathic pain in a rodent model of SCI. Rats were subjected to spinal cord contusion using a controlled linear motor device with an injury epicenter at T10. The SCI rats had severe impairment in locomotor function at 7 days post-injury as assessed by the BBB score. The locomotor scores showed significant improvement starting at day 14 and thereafter showed no further improvement. The Hargreaves’ test was used to assess thermal hyperalgesia for hindpaw, forepaw and tail. A significant reduction in withdrawal latency was observed for forepaw and tail of SCI rats at days 21 and 28, indicating the appearance of thermal hyperalgesia. Changes in expression of mRNAs for IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 were assessed using real-time polymerase chain reaction in spinal cord including the injury epicenter along with regions above and below the level of lesion at day 28 post-injury. A significant increase was observed in the expression of MCP-1, TNF-α, TIMP-1 and IL-1β in the injury epicenter, whereas only TIMP-1 was upregulated in the area below the injury epicenter. The results of the study suggest that prolonged upregulation of inflammatory mediators might be involved in chronic neuropathic pain in SCI, and that TIMP-1 may play a role in maintenance of chronic below level pain.  相似文献   

3.
In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain following SCI and to identify potential therapeutic targets for the treatment of chronic pathological pain.  相似文献   

4.
Neuropathic pain after spinal cord injury (SCI) is developed in about 80% of SCI patients and there is no efficient therapeutic drug to alleviate SCI-induced neuropathic pain. Here we examined the effect of estrogen on SCI-induced neuropathic pain at below-level and its effect on neuroinflammation as underlying mechanisms. Neuropathic pain is developed at late phase after SCI and a single dose of 17β-estradiol (100, 300?μg/kg) were administered to rats with neuropathic pain after SCI through intravenous injection. As results, both mechanical allodynia and thermal hyperalgesia were significantly reduced by 17β-estradiol compared to vehicle control. Both microglia and astrocyte activation in the lamina I and II of L4-5 dorsal horn was also inhibited by 17β-estradiol. In addition, the levels of p-p38MAPK and p-ERK known to be activated in microglia and p-JNK known to be activated in astrocyte were significantly decreased by 17β-estradiol. Furthermore, the mRNA expression of inflammatory mediators such as Il-1β, Il-6, iNos, and Cox-2 was more attenuated in 17β-estradiol-treated group than in vehicle-treated group. Particularly, we found that the analgesic effect by 17β-estradiol was mediated via estrogen receptors, which are expressed in dorsal horn neurons. These results suggest that 17β-estradiol may attenuate SCI-induced neuropathic pain by inhibiting microglia and astrocyte activation followed inflammation.  相似文献   

5.
Zhang  Peisong  Sun  Hanyu  Ji  Zhengang 《Neurochemical research》2021,46(6):1457-1469
Neurochemical Research - Spinal cord injury (SCI) is one of the main causes leading to neuropathic pain. Here, we aim to explore the molecular mechanism and function of lncRNA PVT1 in neuropathic...  相似文献   

6.
Background aimsSpinal cord injury (SCI) represents a devastating condition leading to severe disability related to motor, sensory and autonomic dysfunction. Stem cell transplantation is considered a potential emerging therapy to stimulate neuroplastic and neuroregenerative processes after SCI. In this clinical trial, the authors investigated the safety and clinical recovery effects of intrathecal infusion of expanded Wharton jelly mesenchymal stromal cells (WJ-MSCs) in chronic complete SCI patients.MethodsThe authors designed a randomized, double-blind, crossover, placebo-controlled, phase 1/2a clinical trial (NCT03003364). Participants were 10 patients (7 males, 3 females, age range, 25–47 years) with chronic complete SCI (American Spinal Injury Association A) at dorsal level (T3-11). Patients were randomly assigned to receive a single dose of intrathecal ex vivo-expanded WJ-MSCs (10 × 106 cells) from human umbilical cord or placebo and were then switched to the other arm at 6 months. Clinical evaluation (American Spinal Injury Association impairment scale motor and sensory score, spasticity, neuropathic pain, electrical perception and pain thresholds), lower limb motor evoked potentials (MEPs) and sensory evoked potentials (SEPs), Spinal Cord Independence Measure and World Health Organization Quality of Life Brief Version were assessed at baseline, 1 month, 3 months and 6 months after each intervention. Urodynamic studies and urinary-specific quality of life (Qualiveen questionnaire) as well as anorectal manometry, functional assessment of bowel dysfunction (Rome III diagnostic questionnaire) and severity of fecal incontinence (Wexner score) were conducted at baseline and at 6 months after each intervention.ResultsIntrathecal transplantation of WJ-MSCs was considered safe, with no significant side effects. Following MSC infusion, the authors found significant improvement in pinprick sensation in the dermatomes below the level of injury compared with placebo. Other clinically relevant effects, such as an increase in bladder maximum capacity and compliance and a decrease in bladder neurogenic hyperactivity and external sphincter dyssynergy, were observed only at the individual level. No changes in motor function, spasticity, MEPs, SEPs, bowel function, quality of life or independence measures were observed.ConclusionsIntrathecal transplantation of human umbilical cord-derived WJ-MSCs is a safe intervention. A single intrathecal infusion of WJ-MSCs in patients with chronic complete SCI induced sensory improvement in the segments adjacent to the injury site.  相似文献   

7.
The transplantation of neural stem/progenitor cells is a promising therapeutic strategy for spinal cord injury (SCI). In this study, we tested whether combination of neurotrophic factors and transplantation of glial-restricted precursor (GRPs)-derived astrocytes (GDAs) could decrease the injury and promote functional recovery after SCI. We developed a protocol to quickly produce a sufficiently large, homogenous population of young astrocytes from GRPs, the earliest arising progenitor cell population restricted to the generation of glia. GDAs expressed the axonal regeneration promoting substrates, laminin and fibronectin, but not the inhibitory chondroitin sulfate proteoglycans (CSPGs). Importantly, GDAs or its conditioned medium promoted the neurite outgrowth of dorsal root ganglion neurons in vitro. GDAs were infected with retroviruses expressing EGFP or multi-neurotrophin D15A and transplanted into the contused adult thoracic spinal cord at 8 days post-injury. Eight weeks after transplantation, the grafted GDAs survived and integrated into the injured spinal cord. Grafted GDAs expressed GFAP, suggesting they remained astrocyte lineage in the injured spinal cord. But it did not express CSPG. Robust axonal regeneration along the grafted GDAs was observed. Furthermore, transplantation of D15A-GDAs significantly increased the spared white matter and decreased the injury size compared to other control groups. More importantly, transplantation of D15A-GDAs significantly improved the locomotion function recovery shown by BBB locomotion scores and Tredscan footprint analyses. However, this combinatorial strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. These results demonstrate that transplantation of D15A-expressing GDAs promotes anatomical and locomotion recovery after SCI, suggesting it may be an effective therapeutic approach for SCI.  相似文献   

8.
Loss of synaptic inhibition by γ-aminobutyric acid and glycine due to potassium chloride cotransporter-2 (KCC2) down-regulation in the spinal cord is a critical mechanism of synaptic plasticity in neuropathic pain. Here we present novel evidence that peripheral nerve injury diminishes glycine-mediated inhibition and induces a depolarizing shift in the reversal potential of glycine-mediated currents (Eglycine) in spinal dorsal horn neurons. Blocking glutamate N-methyl-d-aspartate (NMDA) receptors normalizes synaptic inhibition, Eglycine, and KCC2 by nerve injury. Strikingly, nerve injury increases calcium-dependent calpain activity in the spinal cord that in turn causes KCC2 cleavage at the C terminus. Inhibiting calpain blocks KCC2 cleavage induced by nerve injury and NMDA, thereby normalizing Eglycine. Furthermore, calpain inhibition or silencing of μ-calpain at the spinal level reduces neuropathic pain. Thus, nerve injury promotes proteolytic cleavage of KCC2 through NMDA receptor-calpain activation, resulting in disruption of chloride homeostasis and diminished synaptic inhibition in the spinal cord. Targeting calpain may represent a new strategy for restoring KCC2 levels and tonic synaptic inhibition and for treating chronic neuropathic pain.  相似文献   

9.
Patients with spinal cord injury (SCI) develop chronic pain that severely compromises their quality of life. We have previously reported that progesterone (PG), a neuroprotective steroid, could offer a promising therapeutic strategy for neuropathic pain. In the present study, we explored temporal changes in the expression of the neuropeptides galanin and tyrosine (NPY) and their receptors (GalR1 and GalR2; Y1R and Y2R, respectively) in the injured spinal cord and evaluated the impact of PG administration on both neuropeptide systems and neuropathic behavior. Male rats were subjected to spinal cord hemisection at T13 level, received daily subcutaneous injections of PG or vehicle, and were evaluated for signs of mechanical and thermal allodynia. Real time PCR was used to determine relative mRNA levels of neuropeptides and receptors, both in the acute (1 day) and chronic (28 days) phases after injury. A significant increase in Y1R and Y2R expression, as well as a significant downregulation in GalR2 mRNA levels, was observed 1 day after SCI. Interestingly, PG early treatment prevented Y1R upregulation and resulted in lower NPY, Y2R and GalR1 mRNA levels. In the chronic phase, injured rats showed well-established mechanical and cold allodynia and significant increases in galanin, NPY, GalR1 and Y1R mRNAs, while maintaining reduced GalR2 expression. Animals receiving PG treatment showed basal expression levels of galanin, NPY, GalR1 and Y1R, and reduced Y2R mRNA levels. Also, and in line with previously published observations, PG-treated animals did not develop mechanical allodynia and showed reduced sensitivity to cold stimulation. Altogether, we show that SCI leads to considerable changes in the spinal expression of galanin, NPY and their associated receptors, and that early and sustained PG administration prevents them. Moreover, our data suggest the participation of galaninergic and NPYergic systems in the plastic changes associated with SCI-induced neuropathic pain, and further supports the therapeutic potential of PG- or neuropeptide-based therapies to prevent and/or treat chronic pain after central injuries.  相似文献   

10.
ABSTRACT: BACKGROUND: Minocycline has proven anti-nociceptive effects, and delays the development of allodynia/hyperalgesia after peripheral nerve injury. However, the mechanism by which this occurs remains unclear. Inflammatory cells, in particular macrophages, are critical components of the response to nerve injury. Using ultrasmall superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI) to monitor macrophage trafficking, the purpose of this project is to determine whether minocycline modulates macrophage trafficking to the site of nerve injury in vivo and, in turn, results in altered pain thresholds. RESULTS: Animal experiments were approved by Stanford IACUC. A model of neuropathic pain was created using the Spared Nerve Injury (SNI) model that involves ligation of the left sciatic nerve in the left thigh of adult Sprague-Dawley rats. Animals with SNI and uninjured animals (control) were then injected with/without USPIOs (300umol/kg IV) and with/without minocycline (50mg/kg IP). Bilateral sciatic nerves were scanned with a volume coil in a 7T magnet 7 days after USPIO administration. Fluid-sensitive MR images were obtained, and ROIs were placed on bilateral sciatic nerves to quantify signal intensity. Pain behavior modulation by minocycline was measured using the Von Frey filament test. Sciatic nerves were ultimately harvested at day 7, fixed in 10% buffered formalin and stained for the presence of iron oxide-laden macrophages. Behavioral measurements confirmed the presence of allodynia in the neuropathic pain model while the uninjured and minocycline-treated injured group had significantly higher paw withdrawal thresholds (p<0.011). Decreased MR signal is observed in the SNI group that received USPIOs (3.3+/-0.5%) compared to the minocycline-treated SNI group that received USPIOs (15.2+/-4.5%) and minocycline-treated group (no USPIOs; 41.2+/-2.3%) (p<0.04). Histology of harvested sciatic nerve specimens confirmed the presence USPIOs at the nerve injury site in the SNI group without minocycline treatment. CONCLUSION: Animals with neuropathic pain in the left hindpaw show increased trafficking of USPIO-laden macrophages to the site of sciatic nerve injury. Minocycline appears to retard the migration of macrophages to the nerve injury site, which may partly explain its anti-nociceptive effects. USPIO-MRI is an effective in vivo imaging tool to study the role of macrophages in the development of neuropathic pain.  相似文献   

11.

Background aims

Cell therapy with autologous mesenchymal stromal cells (MSCs) in patients with spinal cord injury (SCI) is beginning, and the search for its better clinical application is an urgent need.

Methods

We present a phase 2 clinical trial in patients with chronic SCI who received three intrathecal administrations of 100 x 106 MSCs and were followed for 10 months from the first administration. Efficacy analysis was performed on nine patients, and safety analysis was performed on 11 patients. Clinical scales, urodynamic, neurophysiological and neuroimaging studies were performed previous to treatment and at the end of the follow-up.

Results

The treatment was well-tolerated, without any adverse event related to MSC administration. Patients showed variable clinical improvement in sensitivity, motor power, spasms, spasticity, neuropathic pain, sexual function or sphincter dysfunction, regardless of the level or degree of injury, age or time elapsed from the SCI. In the course of follow-up three patients, initially classified as ASIA A, B and C, changed to ASIA B, C and D, respectively. In urodynamic studies, at the end of follow-up, 66.6% of the patients showed decrease in postmicturition residue and improvement in bladder compliance. At this time, neurophysiological studies showed that 55.5% of patients improved in somatosensory or motor-evoked potentials, and that 44.4% of patients improved in voluntary muscle contraction together with infralesional active muscle reinnervation.

Conclusions

The present guideline for cell therapy is safe and shows efficacy in patients with SCI, mainly in recovery of sphincter dysfunction, neuropathic pain and sensitivity.  相似文献   

12.
Cholecystokinin (CCK) is a physiological antagonist of opioid-mediated antinociception and may be involved in some chronic pain states where opioids have reduced effect. We have previously shown in a rat model of central neuropathic pain after spinal cord injury that blockade of CCK-B receptors lead to marked pain relief. In the present study, we showed that spinally injured rats exhibiting chronic pain-like behaviors (aversive reaction to innocuous mechanical and cold stimulation) had significantly elevated level of CCK-like immunoreactivity in cerebrospinal fluid compared to normal rats or spinally injured rats which did not exhibit pain-like behaviors. The increased level of circulating CCK in the cerebrospinal fluid may thus contribute to the maintenance of chronic pain in these rats by reducing the endogenous inhibitory tone provided by opioid peptides and may be involved in the phenomenon of opioid insensitivity.  相似文献   

13.
14.
摘要 目的:探讨苦参碱对神经病理性大鼠背根神经节P2X3受体、疼痛行为学和疼痛阈值的影响。方法:选择Sprague-Dawley雄性大鼠30只,随机分为3组,包括模型组、试验组和假手术组。于大鼠造模成功1 d后,试验组给予30 mg/(kgod)的剂量在腹腔注射苦参碱溶液,1次/d;给予假手术组和模型组腹腔注射等量浓度为0.9 %的氯化钠溶液,1次/d,共14 d。进行自发疼痛行为学评分检测、机械痛阈值检测、热痛阈值检测、P2X2和P2X3mRNA相对表达量检测、P2X2和P2X3蛋白表达水平检测,以及氧化应激指标水平检测。结果:术后模型组与试验组自发性疼痛行为学评分与假手术组比均升高,自术后第5天起,与模型组比,试验组自发性疼痛行为学评分明显低于模型组(P<0.05);自术后第3天起,相较于假手术组,模型组机械痛阈值、热痛阈值显著下降,相较于模型组,试验组自术后第5天起机械痛阈值、热痛阈值显著上升(均P<0.05);术后第14天试验组与假手术组机械痛阈值、热痛阈值对比无差异(P>0.05);模型组P2X2和P2X3mRNA、P2X2及P2X3蛋白比假手术组和试验组高(均P<0.05),试验组和假手术组P2X2、P2X3mRNA、P2X2及P2X3蛋白比较无差异(P>0.05);干预前及干预1、2周后模型组大鼠脊髓组织SOD比假手术组低,MDA比假手术组高;试验组大鼠脊髓组织SOD比模型组高,MDA比模型组低(均P<0.05)。结论:苦参碱可有效缓解神经病理性痛的所引发的机械痛觉和热痛觉,镇痛作用较好,机制可能在于其可使大鼠背根神经元中P2X2、P2X3受体下降相关,同时其在抑制神经病理性大鼠脊髓组织氧化应激反应方面有一定的作用,与其在对神经病理性痛大鼠脊髓组织神经元凋亡的抑制有密切关系。  相似文献   

15.
16.
目的:观察不同剂量乙酰左旋肉碱(ALC)对脊髓损伤大鼠后肢运动功能恢复和脊髓组织结构的影响,为临床治疗脊髓损伤提供实验和理论依据。方法:将55只8~10周SD大鼠随机分为高(300 mg/kg)、中(200 mg/kg)、低剂量(100 mg/kg)药物干预(SCI+ALC)组、损伤(SCI)组和假手术(Sham)组共5组用于行为学评价、MAD和SOD检测、HPLC检测和HE染色。BBB评分和改良Rivlin斜板实验评价各组大鼠后肢运动功能。HE染色观察对脊髓组织形态结构的影响。另外9只大鼠随机分为Sham组、SCI组和ALC组,用于TUMEL法检测细胞凋亡情况。结果:高、中、低剂量SCI+ALC组干预后BBB评分与SCI组比较,其中中、高剂量ALC组具有显著性差异(P< 0.01),大鼠后肢运动功能得以明显改善;Rivlin斜板实验最大倾斜角,SCI+ALC组较SCI组角度明显增加(P< 0.05),其中中、高剂量ALC组具有显著性差异(P<0.01)。HE染色ALC高剂量组较SCI组,组织结构明显改善,炎性细胞和红细胞数量减少,神经细胞核仁部分显示不清。ELISA法检测大鼠损伤节段脊髓组织中SOD活力和MDA含量。结果提示,SCI+ALC组较SCI组SOD活力明显增加,而MDA含量明显降低(P<0.05),其中中、高剂量ALC组具有显著性差异(P<0.01)。HPLC色谱显示SCI+ALC组新鲜血清样品与ALC标准品溶液在 260 nm处具有相同的紫外吸收光谱,而Sham组和SCI组血清样品在该处未出现光谱值,说明SCI+ALC组样品中存在与标准品相同的物质。TUNEL染色显示Sham组可偶见凋亡信号,ALC高剂量组较SCI组细胞凋亡信号明显减少(P< 0.05)。结论:ALC能促进脊髓损伤大鼠后肢运动功能的恢复,抑制氧化应激和细胞凋亡、对受损脊髓组织具有修复作用。  相似文献   

17.
Neuropathic pain occurs as a result of peripheral or central nervous system injury. Its pathophysiology involves mainly a central sensitization mechanism that may be correlated to many molecules acting in regions involved in pain processing, such as the spinal cord. It has been demonstrated that reactive oxygen species (ROS) and signaling molecules, such as the serine/threonine protein kinase Akt, are involved in neuropathic pain mechanisms. Thus, the aim of this study was to provide evidence of this relationship. Sciatic nerve transection (SNT) was used to induce neuropathic pain in rats. Western blot analysis of Akt and 4-hydroxy-2-nonenal (HNE)-Michael adducts, and measurement of hydrogen peroxide (H2O2) in the lumbosacral spinal cord were performed. The main findings were found seven days after SNT, when there was an increase in HNE-Michael adducts formation, total and p-Akt expression, and H2O2 concentration. However, one and 15 days after SNT, H2O2 concentration was raised in both sham (animals that were submitted to surgery without nerve injury) and SNT groups, showing the high sensibility of this ROS to nociceptive afferent stimuli, not only to neuropathic pain. p-Akt also increased in sham and SNT groups one day post injury, but at 3 and 7 days the increase occurred exclusively in SNT animals. Thus, there is crosstalk between intracellular signaling pathways and ROS, and these molecules can act as protective agents in acute pain situations or play a role in the development of chronic pain states.  相似文献   

18.
Burn-induced neuropathic pain is complex, and fat grafting has reportedly improved neuropathic pain. However, the mechanism of fat grafting in improving neuropathic pain is unclear. Previous investigations have found that neuroinflammation causes neuropathic pain, and anti-inflammatory targeting may provide potential therapeutic opportunities in neuropathic pain. We hypothesized that fat grafting in burn scars improves the neuropathic pain through anti-inflammation. Burn-induced scar pain was confirmed using a mechanical response test 4 weeks after burn injuries, and autologous fat grafting in the scar area was performed simultaneously. After 4 weeks, the animals were sacrificed, and specimens were collected for the inflammation test, including COX-2, iNOS, and nNOS in the injured skin and spinal cord dorsal horns through immunohistochemistry and Western assays. Furthermore, pro-inflammatory cytokines (IL-1 β and TNF-α) in the spinal cord were collected. Double immunofluorescent staining images for measuring p-IκB, p-NFκB, p-JNK, and TUNEL as well as Western blots of AKT, Bax/Bcl-2 for the inflammatory process, and apoptosis were analyzed. Fat grafting significantly reduced COX2, nNOS, and iNOS in the skin and spinal cord dorsal horns, as well as IL-1β and TNF-α, compared with the burn group. Moreover, regarding the anti-inflammatory effect, the apoptosis cells in the spinal cord significantly decreased after the fat grafting in the burn injury group. Fat grafting was effective in treating burn-induced neuropathic pain through the alleviation of neuroinflammation and ameliorated spinal neuronal apoptosis.  相似文献   

19.
To clarify the molecular changes of sublesional muscle in the acute phase of spinal cord injury (SCI), a moderately severe injury (40 g cm) was induced in the spinal cord (T10 vertebral level) of adult male Sprague–Dawley rats (injury) and compared with sham (laminectomy only). Rats were sacrificed at 48 h (acute) post injury, and gastrocnemius muscles were excised. Morphological examination revealed no significant changes in the muscle fiber diameter between the sham and injury rats. Western blot analyses performed on the visibly red, central portion of the gastrocnemius muscle showed significantly higher expression of muscle specific E3 ubiquitin ligases (muscle ring finger-1 and muscle atrophy f-box) and significantly lower expression of phosphorylated Akt-1/2/3 in the injury group compared to the sham group. Cyclooxygenase 2, tumor necrosis factor alpha (TNF-α), and caspase-1, also had a significantly higher expression in the injury group; although, the mRNA levels of TNF-α and IL-6 did not show any significant difference between the sham and injury groups. These results suggest activation of protein degradation, deactivation of protein synthesis, and development of inflammatory reaction occurring in the sublesional muscles in the acute phase of SCI before overt muscle atrophy is seen.  相似文献   

20.
Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号