首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Fire is considered an important factor in influencing the physiognomy, dynamics and composition of Neotropical savannas. Species of diverse physiognomies exhibit different responses to fire, such as population persistence and seed mortality, according to the fire frequency to which they are submitted. The aim of this study is to investigate the effects of heat shocks on seed germination of Anadenanthera macrocarpa (Benth.) Brenan, Dalbergia miscolobium Benth., Aristolochia galeata Mart. & Zucc., Kielmeyera coriacea (Spreng.) Mart. and Guazuma ulmifolia Lam., which are native species of the Brazilian savanna. The temperatures and exposure times to which the seeds were submitted were established according to data obtained in the field during a prescribed fire: 60 °C (10, 20 and 40 min), 80 °C (5, 10 and 20 min) and 100 °C (2, 5 and 10 min). Untreated seeds were used as controls. Seeds of A. galeata and K. coriacea showed high tolerance to most heat treatments, and seeds of A. macrocarpa showed a significant reduction in germination percentage after treatments of 80 °C and 100 °C. Treatments of 100 °C for 10 min reduced germination percentage for all species except G. ulmifolia, which has dormant seeds. For this species, germination was accelerated by heat treatments. The high temperatures applied did not interfere with the time to 50% germination (T50) of the tolerant seeds. Seeds of the savanna species K. coriacea and A. galeata were more tolerant to heat shocks than seeds of the forest species A. macrocarpa. Guazuma ulmifolia, the forest species with seeds that germinate after heat shock, also occurs in savanna physiognomies. Overall, the high temperatures applied did not affect the germination rate of the tolerant seeds.  相似文献   

2.
The butenolide, 3-methyl-2H-furo[2, 3-c]pyran-2-one, is an highly active compound isolated from plant-derived smoke. This compound is known to stimulate seed germination in a wide range of plants akin to smoke or aqueous extracts of smoke. The present study attempted to elucidate the role of the butenolide in overcoming detrimental effects of low and high temperatures on tomato seed germination and seedling growth. The germination percentage followed a parabolic curve for temperatures ranging from 10 to 40°C, with 25°C being the optimum for all treatments. Control seeds showed radicle emergence at two extreme temperatures (10 and 40°C) and seedlings failed to develop further, even upon prolonged incubation. By comparison the butenolide-treated seeds grew into phenotypically normal seedlings at these non-optimum temperatures. The smoke–water-treated seeds had an intermediate response as only a fraction of germinated seed developed into normal seedlings. Seedling vigour indices as well as seedling weight were significantly higher (p ≤ 0.05) for butenolide-treated seeds at all temperatures. Furthermore, seedlings developed in the presence of the butenolide had about a 1:1 correspondence between root and shoot length. Butenolide-treated seeds grew better than the control seeds in the temperature shift experiments. A gradual decline in the vigour index values was recorded with an increased duration of incubation at the extreme temperatures. Results of the present study are very important from an horticultural point of view as they indicate the potential use of the butenolide compound in restoring normal seed germination and seedling establishment in tomato below and above optimum temperatures.  相似文献   

3.
Prosopis chilensis is a plant highly tolerant to heat shock   总被引:1,自引:0,他引:1  
At temperatures between 25 and 35°C, 100% of Prosopis chilensis seeds germinated within 24 h. At higher temperatures, the germination rate was reduced; at 50°C, seeds did not germinate. After germination at 25°C, the optimal temperature for seedling growth was 35°C and the seedlings did not grow at a temperature of 50°C. However, when germination was at 35°C, the optimal temperature for seedling growth was 40°C and some seedlings grew at 50°C, suggesting that thermotolerance was induced during seed germination at 35°C. Further thermotolerance can be induced in seedlings germinated at 35°C, by exposing them to 40°C for 2h. Under these conditions, seedlings exhibited increased growth rate at 45 and 50°C. Fluorography of SDS-polyacrylamide gel electrophoresis of the proteins synthesized and accumulated during 2 h at temperatures of 35, 40, 45 and 50°C in the presence of [35S]methionine revealed the expression of 11 proteins not detectable at 35°C. Most of the proteins present at 35°C also increased in expression. The temperature for maximal expression of these proteins was 45°C.  相似文献   

4.
Low soil temperatures and low water potentials reduce and delay the seed germination of canola (Brassica rapa L., B. napus L.) in western Canada. Germination is also very sensitive to the salinity effects of nitrogen fertiliser placed with the seed, especially when the seed bed is relatively dry. The effects of pre-hydration and re-drying treatment on canola (Brassica rapa L. cv. Tobin) seed germination and seedling emergence at 10°C subjected to either a water or salt stress were determined. Low water potentials, induced by polyethylene glycol (PEG 8000), low soil moisture, or high concentrations of salts, reduced both germination and seedling emergence, and increased the time to 50% germination and emergence of seeds at 10°C. At equal osmotic potentials, Na2SO4 was less inhibitory on low temperature germination than either NaCl or PEG, suggesting that the sulphate ion partially alleviated the inhibitory effects of low water potential. Solutions of NaCI produced more abnormal seedlings compared to Na2SO4, suggesting that NaCl was more toxic than Na2SO4 during seedling development. Pre-hydration and re-drying partially overcame the inhibitory effects of both low water potential and salts on seed germination and seedling emergence at 10°C. The seed treatment increased the germination rate in Petri dishes and seedling emergence from a sandy loam soil. Water potentials or soil water contents required to inhibit 50% germination or emergence at 10°C were lower for treated seeds compared to control seeds. Salt concentrations inhibiting 50% emergence were higher for treated seeds than control seeds. Neither treated nor control seeds produced seedlings which emerged if the soil water content was lower than 9% or when the soil was continuously irrigated with salt solutions of 100 mmol kg-1 of NaCl or 50 mmol kg-1 of Na2SO4. These results suggest that the pre-hydration and re-drying treatment did not lower the base water potentials at which seedling emergence could occur. Abnormal seedlings were observed in both treated and control seeds, particularly if the soil was watered with NaCl solutions; however, the seed treatment reduced the number of abnormal seedlings.  相似文献   

5.
  • Seed germination of Citrullus colocynthis, as in many other species of Cucurbitaceae, is inhibited by light, particularly at low temperatures. Germination response to light and temperature has been attributed to day length and temperature during seed maturation. This study assessed the effects of these factors on the germination response of C. colocynthis to temperature and light quality.
  • Ripe fruits were collected from natural habitats during December and February and germinated at three temperatures (15/25, 20/30 and 25/35 °C) in five light treatments (dark, white light and Red:Far Red (R:FR) ratios of 0.30, 0.87 and 1.19). Additionally, unripe fruits were also collected from natural habitats and completed their maturation in growth chambers under different day lengths (6, 16 and 24 h of darkness) at 10/20 °C, and in darkness at both 10/20 °C and 25/35 °C. Mature seeds of the different treatments were germinated in the same five light treatments at 15/25 °C.
  • Germination was significantly higher in the dark than that in any light treatment. Seeds matured at higher temperatures (i.e. seeds from the December collection and those matured at 25/35 °C) had significantly higher germination than those matured at lower temperatures (i.e. seeds from the February collection and those matured at 10/20 °C). Dark germination was significantly higher for the December collection than for the February collection. Seeds of the two collections germinated in the dark only at 15/25 °C. However, seeds matured in a growth chamber at 10/20 °C in darkness germinated at 15/25 °C in all light treatments, except for the R:FR ratio 0.30. Seeds of the different treatments failed to germinate in FR‐rich light.
  • This study demonstrates that both temperature and day length during seed maturation play significant roles in the germination response of C. colocynthis. Additionally, the dark requirement for germination is likely beneficial for species with the larger seeds, such as C. colocynthis, which produce bigger seedlings that are able to emerge from deep soils and are competitively superior under dense vegetation and resource‐limited conditions.
  相似文献   

6.
  • Information on the optimal conditions to promote the germination of Lamprocapnos spectabilis (L.) Fukuhara seeds is limited; consequently, this study was conducted to establish the requirements to break seed dormancy and promote germination.
  • The selected seeds had morphophysiological dormancy and had not begun embryo development. To study the dormancy breaking and embryo development processes, seeds were subjected to constant or changing temperature treatments during moist stratification.
  • High temperature and humidity resulted in vigorous embryo growth, with the longest embryos occurring after 1 month of incubation at 20 °C. At 4 °C, the seeds required incubation period of at least 3 months to germinate. Embryo growth and germination were higher with changing high and low temperatures than under a constant temperature, and changing temperatures also considerably changed the endogenous hormone levels, embryo development and germination. Bioactive gibberellin (GA) content was higher in seeds incubated at 20 °C for 1 month, then at 4 °C for 2 months. The content of endogenous abscisic acid in seeds subjected to the same treatment decreased by 97.6% compared with that of the untreated seeds.
  • Embryo growth and seed germination require changing high and low temperatures; however, exogenous GA3 could substitute for high temperatures, as it also causes accelerated germination. In this study, the seeds of L. spectabilis were identified as an intermediate simple type, a sub‐level of morphophysiologically dormant seeds.
  相似文献   

7.
  • Seed germination, a critical stage of the plant life cycle providing a link between seeds and seedlings, is commonly temperature-dependent. The global average surface temperature is expected to rise, but little is known about the responses of seed germination of woody plants in temperate forests to warming.
  • In the present study, dried seeds of 23 common woody species in temperate secondary forests were incubated at three temperature sequences without cold stratification and after experiencing cold stratification. We calculated five seed germination indices and the comprehensive membership function value that summarized the above indicators.
  • Compared to the control, +2 and +4 °C treatments without cold stratification shortened germination time by 14% and 16% and increased the germination index by 17% and 26%, respectively. For stratified seeds, +4 °C treatment increased germination percentage by 49%, and +4 and +2 °C treatments increased duration of germination and the germination index, and shortened mean germination time by 69%, 458%, 29% and 68%, 110%, 12%, respectively. The germination of Fraxinus rhynchophylla and Larix kaempferi were most sensitive to warming without and with cold stratification, respectively. Seed germination of shrubs was the least sensitive to warming among functional types.
  • These findings indicate warming (especially extreme warming) will enhance the seedling recruitment of temperate woody species, primarily via shortening the germination time, particularly for seeds that have undergone cold stratification. In addition, shrubs might narrow their distribution range
  相似文献   

8.
Cactus seeds have developed adaptations to survive with high temperatures and low soil moisture in their habitats. We studied the effect of the combination of four water potentials (0, −0.2, −0.4 and −0.6 MPa) and two temperatures (25°C and 35°C) on germination and seedling mass of four endemic Leptocereus species from Cuba. There were two semi-arid coast species (L. arboreus and L. santamarinae) and two species inhabiting dry inland karstic hills (L. ekmanii and L. scopulophilus). We hypothesized that: (a) a decrease in water potential and an increase in temperature would result in low and slow germination, as well as in low seedling mass, and (b) ungerminated cactus seeds after exposure to combined water and temperature stress would have a high recovery capacity. The minimum time required for the seeds to start germination (Tmin), mean germination time (MGT) and germinability were evaluated. In addition, seed mass, the recovery after treatments of non-germinated seeds, and the seedling fresh mass obtained under different treatments were compared between species. In general, germination was only obtained at 25°C and germinability and seedling mass were drastically affected by the reduction from 0 MPa to −0.2 MPa. Seeds showed thermoinhibition at 35°C at all water potentials. There was a tendency to increase the MGT with decreasing water potential in three species. Low seed recovery occurred at all combined treatments for three species. If the predictions of increased temperature and decreased rainfall for the Caribbean region occur, a reduction in the germination of the Leptocereus species studied is expected.  相似文献   

9.
Effects of heating dry seed were investigated in Banksia serratifolia and B. ericifolia. Seeds were inviable after 7 min exposure at 150°C or higher temperatures but remained viable after exposure at 100°C and lower temperatures. Imbibed seeds show no dormancy, and seeds survive fire insulated from heat in the thick woody follicles which may persist unopened for several years on the parent plant but open following fire. Effects of nutritional supplements were observed in the seed germination and seedling survival and growth of Banksia serratifolia, B. aspleniifolia and B. ericifolia. Germination with radicle and hypocotyls extension was not significantly affected by a wide range of mineral nutrient regimes. In pot experiments using a heath soil seedling survival and growth were adversely affected by moderate additions of phosphate with surviving seedlings showing toxicity symptoms and poor development of proteoid roots. Moderate supplements of potassium had no adverse effect, and in B. serratifolia and B. ericifolia lessened the adverse effects of phosphate addition. The slow growth of the seedlings accords with the normal low nutrient availability in heath soils but seedlings show little capacity for rapid exploitation of any temporary increase of available nutrients after fire.  相似文献   

10.
  • Conopodium majus is a geophyte with pseudomonocotyly, distributed in Atlantic Europe. It is an indicator of two declining European habitats: ancient woodland understories and oligotrophic hay meadows. Attempts to reintroduce it by seed have been hindered by scarce seedling emergence and limited knowledge of its seed biology.
  • Micro‐CT scanning was used to assess pseudomonocotyly. Embryo growth and germination were studied in the laboratory and the field, using dissection and image analysis. The effects of temperature, light, nitrate and GA3 on germination were tested. Seed desiccation tolerance was investigated by storage at different RHs and by drying seeds at different stages of embryo growth.
  • Seeds possess morphological but not physiological dormancy. Embryo growth and germination were promoted by temperatures between 0 and 5 °C, arrested above 10 °C, and indifferent to alternating temperatures, light, nitrate and GA3. Pseudomonocotyly appears to result from cotyledon fusion. While seeds tolerated drying to 15% RH and storage for 1 year at 20 °C, viability was lost when storage was at 60% RH. Seeds imbibed at 5 °C for 84 days had significant internal embryo growth but were still able to tolerate drying to 15% RH.
  • Reproduction by seed in C. majus follows a strategy shared by geophytes adapted to deciduous temperate forests. The evolution of fused cotyledons may enable the radicle and the hypocotyl to reach deeper into the soil where a tuber can develop. The embryo is capable of growth within the seed at low temperatures so that germination is timed for early spring.
  相似文献   

11.
Seed responses to temperature are often essential to the study of germination ecology, but the ecological role of temperature in orchid seed germination remains uncertain. The response of orchid seeds to cold stratification have been studied, but the exact physiological role remains unclear. No studies exist that compare the effects of either cold stratification or temperature on germination among distant populations of the same species. In two separate experiments, the role of temperature (25, 22/11, 27/15, 29/19, 33/24°C) and chilling at 10°C on in vitro seed germination were investigated using distant populations of Calopogon tuberosus var. tuberosus. Cooler temperatures promoted germination of Michigan seeds; warmer temperatures promoted germination of South Carolina and north central Florida seeds. South Florida seed germination was highest under both warm and cool temperatures. More advanced seedling development generally occurred at higher temperatures with the exception of south Florida seedlings, in which the warmest temperature suppressed development. Fluctuating diurnal temperatures were more beneficial for germination compared to constant temperatures. Cold stratification had a positive effect on germination among all populations, but South Carolina seeds required the longest chilling treatments to obtain maximum germination. Results from the cold stratification experiment indicate that a physiological dormancy is present, but the degree of dormancy varies across the species range. The variable responses among populations may indicate ecotypic differentiation.  相似文献   

12.
  • Anogeissus leiocarpa (DC.) Guill. & Perr. (Combretaceae) has important economic and cultural value in West Africa as source of wood, dye and medicine. Although this tree is in high demand by local communities, its planting remains limited due to its very low propagation via seed.
  • In this study, X‐rays were used to select filled fruits in order to characterise their morphology and seed germination responses to treatment with sulphuric acid and different incubation temperatures.
  • Morphological observations highlighted a straight orthotropous seed structure. The increase in mass detected for both intact and scarified fruits through imbibition tests, as well as morphological observations of fruits soaked in methylene blue solution, confirmed that they are water‐permeable, although acid‐scarified fruits reached significantly higher mass increment values than intact ones. Acid scarification (10 min soaking in 98% H2SO4) positively affected seed germination rate but not final germination proportions. When intact fruits where incubated at a range of temperatures, no seeds germinated at 10 °C, while maximum seed germination (ca. 80%) was reached at 20 °C. T50 values ranged from a minimum of ca. 12 days at 25 °C to a maximum of ca. 34 days at 15 and 35 °C. A theoretical base temperature for germination (Tb) of ca. 10 °C and a thermal requirement for 50% germination (S) of ca. 195 °Cd were also identified for intact fruits.
  • The results of this study revealed the seed germination characteristics driven by fruit and seed morphology of this species, which will help in its wider propagation in plantations.
  相似文献   

13.
  • Seeds may differ in terms of dormancy, longevity, sensitivity to desiccation and dry mass, according to the timing (dry season/rainy season) of diaspore dispersal. In addition, seasonal variations in temperature and water availability can act as signals of the season during seed development, influencing germination responses and root growth. We evaluated the effects of temperature variations and water availability on germination parameters, root growth and seed traits of four coexisting Piper species in seasonal vegetation that differed in diaspore dispersal timing.
  • Eight temperature treatments (15, 20, 23, 25, 28, 30, 35 °C, and alternate 30 °C–20 °C) and four induced water potentials (0, −0.3, −0.6 and −1.2 MPa) were used. The parameters germination onset, germination percentage (G%), mean germination time (MGT), root elongation, seed longevity during ex situ storage and dry mass of seeds were evaluated.
  • Germination responses observed were independent of the diaspore dispersal timing, such as variations in germination onset, G% and MGT, both in temperature and water availability treatments. In contrast, root elongation, longevity and dry mass of seeds varied according to the time of diaspore dispersal.
  • Our results corroborate the hypothesis that the timing of diaspore dispersal is an important factor in controlling the initial development of seedlings in seasonal vegetation, but not in germination responses. The predominance of negative effects of temperature increases and water deficit on root growth shows that the initial stages of plant development can be strongly impacted by these environmental factors.
  相似文献   

14.
  • Morphological and functional seed traits have important roles in characterising the species regeneration niche and help to understand the reproductive biology of rare and threatened plants, which can thus support appropriate plant conservation measures.
  • Seed morphometric and dispersal kinetics of the critically endangered Dioscorea strydomiana were measured and compared with those of four other Dioscorea species, and seed germination response under constant temperatures (5–35 °C) was compared with that of the congeneric and widespread D. sylvatica.
  • Seed mass of D. strydomiana (ca. 14 mg) was twice that of D. sylvatica, but similar to or smaller than the other species examined. Seeds of D. strydomiana have the lowest speed of descent and lowest variability in most of the morphological traits considered, suggesting lower phenotypic plasticity but higher variance in the wing‐loading value. Seeds of D. strydomiana reached maximum germination at 15 °C (ca. 47%), which decreased slightly to ca. 37% at 25 °C and was completely inhibited at 35 °C. D. sylvatica seeds started to germinate at 10 °C (ca. 3%), reached 75–80% germination at 15–20 °C and maximum (ca. 90%) at 25–30 °C. Base temperatures for germination (Tb) were 9.3 and 5.7 °C, for D. strydomiana and D. sylvatica, respectively. Due to the higher germination percentages of D. sylvatica, ceiling and optimum temperatures could also be modelled for this species, suggesting higher sensitivity to high temperature for seeds of D. strydomiana.
  • The detected poor seed lot quality of D. strydomiana suggests difficulties in reproduction from seed, highlighting the need for further investigation and conservation actions for this threatened yam species.
  相似文献   

15.
  • Polyploidy (the state of having more than two genome copies) is widely distributed in flowering plants and can vary within species, with polyploid races often associated with broad ecological tolerances. Polyploidy may influence within‐species variation in seed development, germination and establishment. We hypothesized that interactions between polyploidy and the seed developmental environment would affect subsequent dormancy, germination and early growth traits, particularly in stressful environments.
  • Using seeds developed in a common garden under ambient and warmed conditions, we conducted germination trials under drought and temperature stress, and monitored the subsequent growth of seedlings. The study species, Themeda triandra, is a widespread, keystone, Australian native grass and a known polyploid complex.
  • Tetraploid plants produced heavier, more viable seeds than diploids. Tetraploids were significantly more dormant than diploids, regardless of seed developmental environment. Non‐dormant tetraploids were more sensitive to germination stress compared to non‐dormant diploids. Finally, tetraploid seedlings were larger and grew faster than diploids, usually when maternal plants were exposed to developmental temperatures atypical to the source environment.
  • Seed and seedling traits suggest tetraploids are generally better adapted to stressful environments than diploids. Because tetraploid seeds of T. triandra are more dormant they are less likely to germinate under stress, and when they do germinate, seedling growth is rapid and independent of seed developmental environment. These novel results demonstrate that polyploidy, sometimes in interaction with developmental environment and possibly also asexuality, can have within‐species variation in seed and seedling traits that increase fitness in stressful environments.
  相似文献   

16.
  • Seed functional traits of native Helianthus species contribute towards ecosystem services but limitations to their use in managed programmes exist. Many perennial Helianthus possess seed dormancy. The ability for germination to occur under different temperature and drought conditions, as well as the capacity of germinated seeds to convert into normal seedlings is rarely considered. Our aim was to identify and quantify these constraints through functional trait analyses.
  • In five seed lots of native Helianthus (four perennial and one annual) and five genotypes of sunflower (H. annuus) for comparison, dormancy, thermal and hydro thresholds and times, morphology, mass, oil content and conversion into normal seedlings were quantified. The influence of the seed collection site environment on these traits was also explored.
  • Seed dormancy of the perennial species was overcome by scarification followed by germination in 5 mm GA3. Thermal and hydro‐time analyses revealed slower germination for the native seed lots (>1350 °Ch) in comparison to the sunflower genotypes (<829.9 °Ch). However, native seed lots had a higher capacity to convert into normal seedlings at high temperatures and low water potentials than sunflower genotypes. For the native seed lots, the average monthly temperature of the collection site was negatively correlated with thermal time.
  • Variability in seed functional traits of native Helianthus and greater capacity for germinated seeds to convert into normal seedlings suggests they are better equipped to cope with high temperature and drought scenarios than sunflower. Effective dormancy alleviation is required to facilitate the use of native Helianthus species.
  相似文献   

17.
  • Cycling of sensitivity to physical dormancy (PY) break has been documented in herbaceous species. However, it has not been reported in tree seeds, nor has the effect of seed size on sensitivity to PY‐breaking been evaluated in any species. Thus, the aims of this study were to investigate how PY is broken in seeds of the tropical legume tree Senna multijuga, if seeds exhibit sensitivity cycling and if seed size affects induction into sensitivity.
  • Dormancy and germination were evaluated in intact and scarified seeds from two collections of S. multijuga. The effects of temperature, moisture and seed size on induction of sensitivity to dormancy‐breaking were assessed, and seasonal changes in germination and persistence of buried seeds were determined. Reversal of sensitivity was also investigated.
  • Fresh seeds were insensitive to dormancy break at wet–high temperatures, and an increase in sensitivity occurred in buried seeds after they experienced low temperatures during winter (dry season). Temperatures ≤20 °C increased sensitivity, whereas temperatures ≥30 °C decreased it regardless of moisture conditions. Dormancy was broken in sensitive seeds by incubating them at 35 °C. Sensitivity could be reversed, and large seeds were more sensitive than small seeds to sensitivity induction.
  • Seeds of S. multijuga exhibit sensitivity cycling to PY‐breaking. Seeds become sensitive during winter and can germinate with the onset of the spring–summer rainy season in Brazil. Small seeds are slower to become sensitive than large ones, and this may be a mechanism by which germination is spread over time. Sensitive seeds that fail to germinate become insensitive during exposure to drought during summer. This is the first report of sensitivity cycling in a tree species.
  相似文献   

18.
Effect of post-irradiation ageing on onion seeds   总被引:1,自引:0,他引:1  
Seeds of onion (Allium cepa) cv. Ailsa Craig were exposed to various doses of gamma radiation (0, 10, 20, 40, 80 and 100 krad) and subjected to accelerated ageing (RH 100%, 42°C) for 12 h. Radiation doses significantly affected the percentage of normal seedlings, abnormality types (%) and seedling growth. Seed viability, conductivities of seed leachates, final germination (%), germination speed and time to reach 50% germination (T 50) were not affected by the seed irradiation. Accelerated ageing after irradiation had significant influence on seed viability, conductivities of seed leachates, final germination (%) and percentage of normal seedlings. Germination speed, T 50 and seedling growth were not affected by the accelerated ageing. However, all the parameters studied were significantly influenced by the interaction of radiation doses and accelerated ageing. Accelerated ageing generally enhanced the damaging effects of irradiation on seeds. Therefore, it was concluded that onion seeds should not be exposed to adverse environmental conditions after irradiation.  相似文献   

19.
  • Helichrysum microphyllum subsp. tyrrhenicum (Asteraceae) is an endemic taxon of Sardinia and Corsica, where it grows at different altitudes. The objective of this study was to investigate the seed traits and germination behaviour of four Sardinian populations of this taxon located at different altitudes.
  • Seed traits were evaluated, and germination tests were carried out by incubating seeds at a range of constant (5–30 °C) and alternating (25/10 °C) temperatures. The dry after‐ripening (DAR) pre‐treatment was also applied by storing seed in dry conditions for 3 months at 25 °C. Seed traits and germination behaviour data were statistically analysed to identify if there was a correlation with altitude.
  • Differences in seed size, area and mass among populations were recorded, however, no relationship was found with altitude. High germination percentages were obtained in all populations, both in untreated and DAR seeds, and were positively affected by alternating temperatures. The final germination percentage and time required to reach 50% final germination (T50) showed no relationship with altitude.
  • The differences in seed traits and germination detected among the studied populations of H. microphyllum subsp. tyrrhenicum were not correlated with altitude. This study provides new and important knowledge for this taxon. H. microphyllum subsp. tyrrhenicum is characterised by high germination percentages and low T50 values and does not seem to require any dormancy‐breaking treatment. This species represents a high‐potential native plant species that should be considered within environmental management plans.
  相似文献   

20.
Abstract The objective of this work was to evaluate postfire environmental effects on the emergence, survival and growth of Prosopis caldenia seedlings in relation to different controlled fire frequencies, seed scarification methods, and planting site. Seedling emergence was significantly higher in experimental units exposed twice and three times to controlled fire than in unburned experimental units. The highest average seedling survival was recorded with triple exposure to controlled fires. Emergence, survival and growth of seedlings from seeds exposed to acid scarification and 600°C for 5 min were higher in the burned experimental units than in the unburned ones. In the former, seedling survival was higher beneath a P. caldenia canopy than in an adjacent open site, though seedling emergence was similar in both planting sites. Our results suggest that postfire conditions characterized by a reduction in the vegetative cover and competition interference and an increase in soil temperatures and nutrients levels (e.g. nitrogen and phosphorus) may facilitate the establishment of P. caldenia seedlings in the Caldenal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号