首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rat hepatocytes were maintained in a serum-free, hormonally defined medium supplemented with 50-500 microM albumin-bound 20:1 (n-9) vs 20:4 (n-6). The induction of fatty acid synthase mRNA by a mix of insulin/dexamethasone/T3 was inhibited in a dose dependent fashion by 20:4 (n-6). The abundance of beta-actin mRNA was not suppressed by 20:4 (n-6). The expression of fatty acid synthase was actually stimulated 2-fold by 20:1 (n-9). It would appear that the in vivo inhibition of fatty acid synthase gene expression by dietary polyunsaturated fatty acids is a specific hepatocelluar event.  相似文献   

4.
Morin (MO), a natural bioflavinoid, exists in many herbs. Previous studies have acclaimed MO's anti-inflammatory, antidiabetic, antioxidant, antifibrotic, anticancer, and antihyperglycemic biological effects. This study aimed to assess the molecular mechanism of MO involved in the oleic acid (OA)-induced inflammatory damage and lipid accumulation in HepG2 cell and tyloxapol (Ty)-induced hyperlipidemia in mice. We found that MO can efficaciously mitigate reactive tumor necrosis factor-α (TNF-α) level and triglyceride (TG) accumulation in OA-induced HepG2 cell and in tyloxapol-induced mice. Next, the study testified that MO apparently suppressed OA-excited nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways in HepG2 cell. In addition, MO distinctly upregulated the expression of peroxisome proliferator-activated receptor α (PPARα) and decreased the expression of sterol regulatory element-binding protein 1c (SREBP-1c) in OA-induced HepG2 cell and in tyloxapol-induced mice, both of which are dependent upon the phosphorylation of acetyl-CoA carboxylase (ACC), adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), and protein kinase B (AKT). In conclusion, these results suggest that MO has protective potential against hyperlipidemia and steatosis, and the potential mechanism may have a close relation with activation of PPARα and inhibition of SREBP-1c.  相似文献   

5.
Insect hormones and microRNAs regulate lipid metabolism, but the mechanisms are not fully elucidated. Here, we found that cotton bollworm larvae feeding on Arabidopsis thaliana (AT) leaves had a lower triacylglycerol (TAG) level and more delayed development than individuals feeding on artificial diet (AD). Association analysis of small RNA and mRNA revealed that the level of miR-2055, a microRNA related to lipid metabolism, was significantly higher in larvae feeding on AT. Dual-luciferase reporter assays demonstrated miR-2055 binding to 3′ UTR of fatty acid synthase (FAS) mRNA to suppress its expression. Elevating the level of miR-2055 in larvae by agomir injection decreased FAS mRNA and protein levels, which resulted in reduction of free fatty acid (FFA) and TAG in fat body. Interestingly, in vitro assays illustrated that juvenile hormone (JH) increased miR-2055 accumulation in a dosage-dependent manner, whereas knockdown of Methoprene tolerant (Met) or Kruppel homologue 1 (Kr-h1) decreased the miR-2055 level. This implied that JH induces the expression of miR-2055 via a Met-Kr-h1 signal. These findings demonstrate that JH and miRNA cooperate to modulate lipid synthesis, which provides new insights into the regulatory mechanisms of metabolism in insects.  相似文献   

6.
Effects of magnesium and iron on lipid peroxidation in cultured hepatocytes   总被引:9,自引:0,他引:9  
In primary cultures of rat hepatocytes, the effects of extracellular Mg2+ and Fe on lipid peroxidation (LPO) as measured by means of malondialdehyde (MDA) formation were investigated.Incubation of hepatocytes at decreasing extracellular Mg2+ concentration enhanced LPO, depending on extracellular Fe. About 96% of MDA accumulated in the culture medium. Addition of desferrioxamine prevented LPO.Additionally, the formation of oxygen free radicals was determined by fluorescence reduction of cis-parinaric acid. With this method, an immediate decay of fluorescence was found after addition of Fe2+. Fluorescence reduction was completely prevented by desferrioxamine, indicating the function of extracellular Fe. This mechanism may operate additionally to the increase in intracellular Fe and intracellular formation of oxygen free radicals during Mg deficiencyin vivo.  相似文献   

7.
Anterior gradient 2 (AGR2), a protein disulfide isomerase (PDI), is a well-established oncogene. Here, we found that Agr2-/- mice had a decreased fat mass and hepatic and serum lipid levels compared with their wild-type littermates after fasting, and exhibited reduced high-fat diet (HFD)-induced fat accumulation. Transgenic mice overexpressing AGR2 (Agr2/Tg) readily gained fat weight on a HFD but not a normal diet. Proteomic analysis of hepatic samples from Agr2-/- mice revealed that depletion of AGR2 impaired long-chain fatty acid uptake and activation but did not affect de novo hepatic lipogenesis. Further investigations led to the identification of several effector substrates, particularly fatty acid binding protein-1 (FABP1) as essential for the AGR2-mediated effects. AGR2 was coexpressed with FABP1, and knockdown of AGR2 resulted in a reduction in FABP1 stability. Physical interactions of AGR2 and FABP1 depended on the PDI motif in AGR2 and the formation of a disulfide bond between these two proteins. Overexpression of AGR2 but not a mutant AGR2 protein lacking PDI activity suppressed lipid accumulation in cells lacking FABP1. Moreover, AGR2 deficiency significantly reduced fatty acid absorption in the intestine, which might be resulted from decreased fatty acid transporter CD36 in mice. These findings demonstrated a novel role of AGR2 in fatty-acid uptake and activation in both the liver and intestine, which contributed to the AGR2-mediated lipid accumulation, suggesting that AGR2 is an important regulator of whole-body lipid metabolism and down-regulation of AGR2 may antagonize the development of obesity.  相似文献   

8.
A hallmark of the nonalcoholic fatty liver disease is the accumulation of lipids. We developed a mathematical model of the hepatic lipid dynamics to simulate the fate of fatty acids in hepatocytes. Our model involves fatty acid uptake, lipid oxidation, and lipid export. It takes into account that storage of triacylglycerol within hepatocytes leads to cell enlargement reducing the sinusoids radius and impairing hepatic microcirculation. Thus oxygen supply is reduced, which impairs lipid oxidation. The analysis of our model revealed a bistable behavior (two stable steady states) of the system, in agreement with histological observations showing distinct areas of lipid accumulation in lobules. The first (healthy) state is characterized by intact lipid oxidation and a low amount of stored lipids. The second state in our model may correspond to the steatotic cell; it is marked by a high amount of stored lipids and a reduced lipid oxidation caused by impaired oxygen supply. Our model stresses the role of insufficient oxygen supply for the development of steatosis. We discuss implications of our results in regard to the experimental design aimed at exploring lipid metabolism reactions under steatotic conditions. Moreover, the model helps to understand the reversibility of lipid accumulation and predicts the reversible switch to show hysteresis. The system can switch from the steatotic state back to the healthy state by reduction of fatty acid uptake below the threshold at which steatosis started. The reversibility corresponds to the observation that caloric restriction can reduce the lipid content in the liver.  相似文献   

9.
Animal models link ectopic lipid accumulation to renal dysfunction, but whether this process occurs in the human kidney is uncertain. To this end, we investigated whether altered renal TG and cholesterol metabolism results in lipid accumulation in human diabetic nephropathy (DN). Lipid staining and the expression of lipid metabolism genes were studied in kidney biopsies of patients with diagnosed DN (n = 34), and compared with normal kidneys (n = 12). We observed heavy lipid deposition and increased intracellular lipid droplets. Lipid deposition was associated with dysregulation of lipid metabolism genes. Fatty acid β-oxidation pathways including PPAR-α, carnitine palmitoyltransferase 1, acyl-CoA oxidase, and L-FABP were downregulated. Downregulation of renal lipoprotein lipase, which hydrolyzes circulating TGs, was associated with increased expression of angiopoietin-like protein 4. Cholesterol uptake receptor expression, including LDL receptors, oxidized LDL receptors, and acetylated LDL receptors, was significantly increased, while there was downregulation of genes effecting cholesterol efflux, including ABCA1, ABCG1, and apoE. There was a highly significant correlation between glomerular filtration rate, inflammation, and lipid metabolism genes, supporting a possible role of abnormal lipid metabolism in the pathogenesis of DN. These data suggest that renal lipid metabolism may serve as a target for specific therapies aimed at slowing the progression of glomerulosclerosis.  相似文献   

10.
Whereas the role of liver fatty acid-binding protein (L-FABP) in the uptake, transport, mitochondrial oxidation, and esterification of normal straight-chain fatty acids has been studied extensively, almost nothing is known regarding the function of L-FABP in peroxisomal oxidation and metabolism of branched-chain fatty acids. Therefore, phytanic acid (most common dietary branched-chain fatty acid) was chosen to address these issues in cultured primary hepatocytes isolated from livers of L-FABP gene-ablated (-/-) and wild type (+/+) mice. These studies provided three new insights: First, L-FABP gene ablation reduced maximal, but not initial, uptake of phytanic acid 3.2-fold. Initial uptake of phytanic acid uptake was unaltered apparently due to concomitant 5.3-, 1.6-, and 1.4-fold up-regulation of plasma membrane fatty acid transporter/translocase proteins (glutamic-oxaloacetic transaminase, fatty acid transport protein, and fatty acid translocase, respectively). Second, L-FABP gene ablation inhibited phytanic acid peroxisomal oxidation and microsomal esterification. These effects were consistent with reduced cytoplasmic fatty acid transport as evidenced by multiphoton fluorescence photobleaching recovery, where L-FABP gene ablation reduced the cytoplasmic, but not membrane, diffusional component of NBD-stearic acid movement 2-fold. Third, lipid analysis of the L-FABP gene-ablated hepatocytes revealed an altered fatty acid phenotype. Free fatty acid and triglyceride levels were decreased 1.9- and 1.6-fold, respectively. In summary, results with cultured primary hepatocytes isolated from L-FABP (+/+) and L-FABP (-/-) mice demonstrated for the first time a physiological role of L-FABP in the uptake and metabolism of branched-chain fatty acids.  相似文献   

11.
Lipid metabolism was investigated during the reproductive cycle of Labidura riparia (Pallas). The lipid classes and their constitutive fatty acids present in hemolymph and ovaries were measured using thin‐layer chromatography and gas‐liquid chromatography. In the hemolymph, total lipids increase steadily from the previtellogenic period to vitellogenic arrest. These lipids are predominantly diacylglycerols and phospholipids. In the ovaries, total lipids increase during vitellogenesis then decrease during the vitellogenesis arrest period. The major lipids are triacylglycerols, followed by phospholipids. In both hemolymph and ovaries, all lipid classes contained variable proportions of seven main fatty acids: the saturated fatty acids myristic acid (14:0), palmetic acid (16:0), and stearic acid (18:0); the monounsaturated fatty acids palmitoleic acid (16:1) and oleic acid (18:1); and the polyunsaturated fatty acids linoleic acid (18:2) and linolenic acid (18:3). Unsaturated fatty acids predominate throughout the reproductive cycle. The percentage compositions of total and triacylglycerol fatty acids do not change markedly during the reproductive cycle in hemolymph nor in ovaries, with 18:2, 18:1 and 16:0 fatty acids being the major components. However, for diacylglycerols and phospholipids, the proportions of fatty acids vary systematically. For phospholipids during the vitellogenesis period, 18:2 increases considerably whereas other fatty acids decrease; for diacylglycerols, these fatty acids vary in the reverse way.  相似文献   

12.
13.
Increased plasma free fatty acids (FFAs) and liver triglyceride (TG) accumulations have been implicated in the pathogenesis of hepatic steatosis. On the other hand, trace elements function as essential cofactors that are involved in various biochemical processes in mammals, including metabolic homeostasis. Notably, clinical and animal studies suggest that the plasma levels of bromide negatively correlate with those of TG, total cholesterol (TC) and high‐density lipoprotein‐cholesterol (HDL‐C). However, the effect of bromide on lipid accumulation and the direct molecular target responsible for its action remains unknown. Oil red O (ORO) and Nile red staining were used to detect the effect of bromide on lipid accumulation in mouse primary hepatocytes (PHs) treated with different doses of sodium bromide (NaBr) in the presence of FFAs (0.4 mM oleate/palmitic acid 1:1). Spectrophotometric and fluorometric analyses were performed to assess cellular TG concentrations and rates of fatty acid oxidation (FAO), respectively, in mouse PHs. We found that bromide decreased FFA‐induced lipid accumulation and increased FFA‐inhibited oxygen consumptions in mouse PHs in a dose‐dependent manner via activation of PPARα. Mechanical studies demonstrated that bromide decreased the phosphorylation levels of JNK. More importantly, the PPARα‐specific inhibitor GW6471 partially abolished the beneficial effects of bromide on mouse PHs. Bromide alleviates FFA‐induced excessive lipid storage and increases rates of FAO through the activation of PPARα/JNK signals in mouse PHs. Therefore, bromide may serve as a novel drug in the treatment of hepatic steatosis.  相似文献   

14.
15.
Treatment of Sprague-Dawley (SD) rats with a dosing regimen of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) maintaining a steady-state liver concentration of 150 ng/g results in enhanced hepatocyte proliferation in the periportal region, but reduced proliferation in the remainder of the hepatic lobule (Fox et al. (1993) Cancer Res., 53, 2265–2271). Here, we report an initial characterization of the actions of TCDD on hepatocyte proliferation by monitoring DNA synthesis in primary hepatocytes isolated from SD rats. TCDD caused a dose-dependent inhibition (EC50 = 10 pM) of DNA synthesis in primary hepatocytes isolated from either male or female SD rats in the presence or absence of known hepatocyte mitogens (epidermal growth factor, hepatocyte growth factor, and transforming growth factor ). No change in DNA synthesis was observed at TCDD concentrations less than 1 pM. Initial characterization of the EGF response system in these cells revealed that TCDD did not alter the specific binding of EGF, or the levels of EGF receptor protein measured in intact cells or cell lysates. TCDD-dependent inhibition of DNA synthesis occurred independently of the suppression observed with transforming growth factor-β1. Estradiol did not alter DNA synthesis in the presence or absence of TCDD. Taken together, these findings indicate that TCDD suppresses DNA synthesis via a novel pathway that is non-responsive to estradiol, independent of TGF-β, and does not involve a decreased ability of hepatocytes to recognize (bind) EGF, a prototype mitogen.  相似文献   

16.
17.
18.
The effect of insulin on the activity of pyruvate dehydrogenase is studied in isolated hepatocytes from fed rats. Insulin increases the ‘initial’ activity of pyruvate dehydrogenase by 30% without modifying the total activity of the enzyme. The maximal increase is reached 3 min after addition of the hormone and is dose-dependent. Insulin also increases the rate of fatty acid synthesis.  相似文献   

19.
Cells produce two cholesteryl ester transfer protein (CETP) isoforms, full-length and a shorter variant produced by alternative splicing. Blocking synthesis of both isoforms disrupts lipid metabolism and storage. To further define the role of CETP in cellular lipid metabolism, we stably overexpressed full-length CETP in SW872 cells. These CETP+ cells had several-fold higher intracellular CETP and accumulated 50% less TG due to a 26% decrease in TG synthesis and 2.5-fold higher TG turnover rate. Reduced TG synthesis was due to decreased fatty acid uptake and impaired conversion of diglyceride to TG even though diacylglycerol acyltransferase activity was normal. Sterol-regulatory element binding protein 1 mRNA levels were normal, and although PPARγ expression was reduced, the expression of several of its target genes including adipocyte triglyceride lipase, FASN, and APOE was normal. CETP+ cells contained smaller lipid droplets, consistent with their higher levels of perilipin protein family (PLIN) 3 compared with PLIN1 and PLIN2. Intracellular CETP was mostly associated with the endoplasmic reticulum, although CETP near lipid droplets poorly colocalized with this membrane. A small pool of CETP resided in the cytoplasm, and a subfraction coisolated with lipid droplets. These data show that overexpression of full-length CETP disrupts lipid homeostasis resulting in the formation of smaller, more metabolically active lipid droplets.  相似文献   

20.
We previously reported that dietary amino acid restriction induces the accumulation of triglycerides (TAG) in the liver of growing rats. However, differences in TAG accumulation in individual cell types or other tissues were not examined. In this study, we show that TAG also accumulates in the muscle and adipose tissues of rats fed a low amino acid (low-AA) diet. In addition, dietary lysine restriction (low-Lys) induces lipid accumulation in muscle and adipose tissues. In adjusting the nitrogen content to that of the control diet, we found that glutamic acid supplementation to the low-AA diet blocked lipid accumulation, but supplementation with the low-Lys diet did not, suggesting that a shortage of nitrogen caused lipids to accumulate in the skeletal muscle in the rats fed a low-AA diet. Serum amino acid measurement revealed that, in rats fed a low-Lys diet, serum lysine levels were decreased, while serum threonine levels were significantly increased compared with the control rats. When the threonine content was restricted in the low-Lys diet, TAG accumulation induced by the low-Lys diet was completely abolished in skeletal muscle. Moreover, in L6 myotubes cultured in medium containing high threonine and low lysine, fatty acid uptake was enhanced compared with that in cells cultured in control medium. These findings suggest that the increased serum threonine in rats fed a low-Lys diet resulted in lipid incorporation into skeletal muscle, leading to the formation of fatty muscle tissue. Collectively, we propose conceptual hypothesis that “amino-acid signal” based on lysine and threonine regulates lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号