首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of observers to detect temporal gaps in bursts of sinusoids or bursts of band-limited noise was measured to assess the temporal acuity of Pacinian (P) and non-Pacinian (NP) tactile information processing channels. The P channel was isolated by delivering high frequency sinusoids or high frequency noise through a large 1.5-cm2 contactor to the thenar eminence. The NP channels were isolated from the P channel by delivering these stimuli as well as stimuli with lower frequencies through a small 0.01-cm2 contactor to the same site. Gap detection thresholds were higher for gaps in noise than for gaps in sinusoids but did not differ among conditions designed to isolate P and NP channels. The finding that temporal acuity does not differ among channels supports the hypothesis that, after termination of a stimulus, the P and NP channels exhibit the same amount of neural persistence. Also consistent with this hypothesis are the earlier findings that the enhancement of the sensation magnitude of a stimulus by a prior stimulus (Verrillo and Gescheider, Percept Psychophys 18: 128-136, 1975) and the duration of sensation after the termination of a stimulus (Gescheider et al., J Acoust Soc Am 91: 1690-1696, 1992) are independent of stimulus frequency. One important implication of this hypothesis, if true, is that the presence of temporal summation in the P channel and its absence in the NP channels, results, not from the lack of neural persistence in the NP channels, but instead, in marked contrast to the P channel, from the lack of a mechanism for integrating persistent neural activity over time.  相似文献   

2.
Thresholds were measured for the detection of vibratory stimuli of variable frequency and duration applied to the index fingertip and thenar eminence through contactors of different sizes. The effects of stimulus frequency could be accounted for by the frequency characteristics of the Pacinian (P), non-Pacinian (NP) I, and NP III channels previously determined for the thenar eminence (Bolanowski et al., J Acoust Soc Am 84 : 1680-1694, 1988; Gescheider et al., Somatosens Mot Res 18: 191- 201, 2001). The effect of changing stimulus duration was also essentially identical for both sites, demonstrating the same amount of temporal summation in the P channel. Although the effect of changing stimulus frequency and changing stimulus duration did not differ for the two sites, the effect of varying the size of the stimulus was significantly greater for the thenar eminence than for the fingertip. The attenuated amount of spatial summation on the fingertip was interpreted as an indication that the mechanism of spatial summation consists of the operations of both neural integration and probability summation.  相似文献   

3.
Thresholds were measured for the detection of vibratory stimuli of variable frequency and duration applied to the index fingertip and thenar eminence through contactors of different sizes. The effects of stimulus frequency could be accounted for by the frequency characteristics of the Pacinian (P), non-Pacinian (NP) I, and NP III channels previously determined for the thenar eminence (Bolanowski et al., J Acoust Soc Am 84: 1680-1694, 1988; Gescheider et al., Somatosens Mot Res 18: 191-201, 2001). The effect of changing stimulus duration was also essentially identical for both sites, demonstrating the same amount of temporal summation in the P channel. Although the effect of changing stimulus frequency and changing stimulus duration did not differ for the two sites, the effect of varying the size of the stimulus was significantly greater for the thenar eminence than for the fingertip. The attenuated amount of spatial summation on the fingertip was interpreted as an indication that the mechanism of spatial summation consists of the operations of both neural integration and probability summation.  相似文献   

4.
The frequency selectivity of the P, NP I, and NP II channels of the four-channel model of mechanoreception for glabrous skin was measured psychophysically by an adaptation tuning curve procedure. The results substantially extend the frequency range over which the frequency selectivity of these channels is known and further confirm the hypothesis that the input stage of each of these channels consists of specific sensory nerve fibers and associated receptors. Specifically, the frequency characteristics of Pacinian nerve fibers, rapidly adapting (RA) nerve fibers, and slowly adapting Type II (SA II) nerve fibers were found to be the peripheral neurophysiological correlates of the P, NP I, and NP II channels, respectively. The finding that the tuning characteristic for a test stimulus of 250 Hz delivered through a small (0.008 cm2) contactor depended dramatically on the duration of the test stimulus whereas the detection threshold did not, provides new evidence in support of the hypothesis that separate NP II and P channels exist.  相似文献   

5.
Psychophysical thresholds for the detection of a 300-Hz burst of vibration applied to the thenar eminence were measured for stimuli applied to the skin through 1.5?cm2 and through 0.05?cm2 contactors. Thresholds were approximately 13?dB lower when the area of the contactor was 1.5?cm2 than when it was 0.05?cm2. The difference between the thresholds measured with the large and small contactors was significantly reduced when only the lowest thresholds obtained in the testing sessions were considered. This result supports the hypothesis that one component of spatial summation in the P channel is probability summation. In addition, threshold measurements within a session were less variable when measured with the 1.5?cm2 contactor. We conclude that spatial summation in the P channel is a joint function of two processes that occur as the areal extent of the stimulus increases: probability summation in which the probability of exceeding the psychophysical detection threshold increases as the number of receptors of varying sensitivities increases, and neural integration in which neural activity originating from separate receptors is combined within the central nervous system rendering the channel more sensitive to the stimulus.  相似文献   

6.
The frequency selectivity of the P, NP I, and NP II channels of the four-channel model of mechanoreception for glabrous skin was measured psychophysically by an adaptation tuning curve procedure. The results substantially extend the frequency range over which the frequency selectivity of these channels is known and further confirm the hypothesis that the input stage of each of these channels consists of specific sensory nerve fibers and associated receptors. Specifically, the frequency characteristics of Pacinian nerve fibers, rapidly adapting (RA) nerve fibers, and slowly adapting Type II (SA II) nerve fibers were found to be the peripheral neurophysiological correlates of the P, NP I, and NP II channels, respectively. The finding that the tuning characteristic for a test stimulus of 250 Hz delivered through a small (0.008 cm2) contactor depended dramatically on the duration of the test stimulus whereas the detection threshold did not, provides new evidence in support of the hypothesis that separate NP II and P channels exist.  相似文献   

7.
Summary Gap-detection thresholds of single units were determined from auditory forebrain neurons of the awake starling. Nine different response types were statistically defined from the discharge pattern to a 400 ms broadband noise stimulus. The gap stimuli consisted of two broadband noise bursts which were separated by a gap ranging from 0.4 to 204.8 ms duration. The median minimumdetectable gap for 121 out of 145 units that had a significant threshold 204.8ms was 12.8 ms; 20% of the neurons showed thresholds between 0.4 and 3.2 ms. The neurons of the nine response types differed significantly in their minimum-detectable gaps; neurons with phasic-tonic and phasic excitation exhibited the best (i.e. shortest) minimum-detectable gaps. The neurons of the three different recording areas (field L, NCM and HV) were significantly different in their minimumdetectable gaps; field L neurons showed the best temporal resolution for gaps in broadband noise. Gap-detection thresholds are compared with psychophysical thresholds determined with the same stimuli and the relevance of forebrain units for temporal resolution is discussed.Abbreviations CS control stimulus - HV hyperstriatum ventrale - HVc hyperstriatum ventrale pars caudalis - NB noise burst - NCM neostriatum caudale pars medialis - NS noise stimulus - SGS standard gap series - TW time window  相似文献   

8.
An ALSCAL multidimensional scaling analysis in Euclidean space revealed that three orthogonal perceptual dimensions can account for the judged tactile dissimilarities of raised-dot patterns. Through magnitude estimates of various perceptual attributes, it was determined that the three dimensions consist of blur, roughness, and clarity. The only effect that selective adaptation of the Pacinian (P) channel had was to change the perceptual clarity of the raised dots against their background. Adaptation of the P channel with a 20?dB SL 250?Hz stimulus enhanced clarity. As indicated by magnitude estimates, adaptation of the P channel by the 250?Hz stimulus had no effect on the perceived roughness of the dot pattern but did cause the individual dots of the textured pattern to feel smoother. When the observer was required to estimate magnitude “overall roughness” defined as a combination of dot-pattern roughness and individual-dot roughness, adaptation of the P channel affected perceived roughness by reducing it. Taken as a whole, the results are consistent with the hypothesis that the NP channels and the P channel jointly influence the perception of textured surfaces.  相似文献   

9.
Previous histological and neurophysiological studies have shown that the innervation density of rapidly adapting (RA) mechanoreceptive fibers increases towards the fingertip. Since the psychophysical detection threshold depends on the contribution of several RA fibers, a high innervation density would imply lower thresholds. However, our previous human study showed that psychophysical detection thresholds for the Non-Pacinian I channel mediated by RA fibers do not improve towards the fingertip. By recording single-unit spike activity from rat RA fibers, here we tested the hypothesis that the responsiveness of RA fibers is asymmetric in the proximo-distal axis which may counterbalance the effects of innervation density. RA fibers (n?=?32) innervating the digital glabrous skin of rat hind paw were stimulated with 40-Hz sinusoidal mechanical bursts at five different stimulus locations relative to the receptive field (RF) center (two distal, one RF center, two proximal). Different contactor sizes (area: 0.39, 1.63, 2.96?mm2) were used. Rate-intensity functions were constructed based on average firing rates, and the absolute spike threshold and the entrainment threshold were obtained for each RA fiber. Thresholds for proximal stimulus locations were found to be significantly higher than those for distal stimulus locations, which suggests that the mechanical stimulus is transmitted better towards the proximal direction. The effect of contactor size was not significant. Mechanical impedance of the rat digital glabrous skin was further measured and a lumped-parameter model was proposed to interpret the relationship between the asymmetric response properties of RA fibers and the mechanical properties of the skin.  相似文献   

10.
ABSTRACT

Phonemic restoration, a form of temporal induction, occurs when the human brain compensates for masked or missing portions of speech by filling in obscured or nonexistent sounds. We tested for temporal induction and related abilities in females of the Gray Treefrog Hyla versicolor. The number of pulses in calls is used by females for assessment of males. Accordingly, an ability to “restore” or interpolate between masked or otherwise sonically degraded portions of calls could help females during mate choice in noisy choruses. In phonotaxis experiments, we employed unmodified calls and those that had a centrally placed gap, a region overlapped by a portion of another call or filtered noise, or replaced with filtered noise. When offered call alternatives with equivalent numbers of clear pulses, we found that females discriminated against calls with gaps two or more times greater than the natural 25 ms interpulse interval. When a gap was replaced with a zone of call overlap or noise (so, again the call durations of the alternatives were unequal), females discriminated either in favour (overlap) of the modified stimuli or failed to discriminate (noise). However, when the unmodified and modified stimuli were the same duration, females discriminated against the latter. Normal calls were also chosen when paired against calls with multiple noise sections. Pulses formed from noise bursts were attractive, but less so than normal pulses. In single speaker tests, standardized rates of movement did not differ between calls containing noise segments of different duration. Our results therefore do not indicate that females of the Gray Treefrog employ a form of temporal induction that is fully restorative. However, the data indicate that acoustically anomalous sections of calls can retain attractive potential provided acoustic energy and pulses are present.  相似文献   

11.
Birdsong is a unique model to address learning mechanisms of the timing control of sequential behaviors, with characteristic temporal structures consisting of serial sequences of brief vocal elements (syllables) and silent intervals (gaps). Understanding the neural mechanisms for plasticity of such sequential behavior should be aided by characterization of its developmental changes. Here, we assessed the level of acute vocal plasticity between young and adult Bengalese finches, and also quantified developmental change in variability of temporal structure. Acute plasticity was tested by delivering aversive noise bursts contingent on duration of a target gap, such that birds could avoid the noise by modifying their song. We found that temporal variability of song features decreased with birds' maturation. Noise‐avoidance experiments demonstrated that maximal changes of gap durations were larger in young that in adult birds. After these young birds matured, the maximal change decreased to a similar level as adults. The variability of these target gaps also decreased as the birds matured. Such parallel changes suggest that the level of acute temporal plasticity could be predicted from ongoing temporal variability. Further, we found that young birds gradually began to stop their song at the target gap and restart from the introductory part of song, whereas adults did not. According to a synaptic chain model for timing sequence generation in premotor nuclei, adult learning would be interpreted as adaptive changes in conduction delays between chain‐to‐chain connections, whereas the learning of young birds could mainly depend on changes of the connections. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 995–1006, 2017  相似文献   

12.
A computational model based on previous physiological and psychophysical data is presented for the human Pacinian (P) psychophysical channel. The model can predict the probability of detection in simple psychophysical tasks, and hence psychometric functions and thresholds. The model simulates stimulating variable and fixed glabrous skin sites with different-sized contactors and includes spatial variation of monkey P-fiber sensitivities. Therefore, it is especially suitable for studying spatial summation, i.e. the improvement of threshold with increasing contactor area. Selective contributions of neural integration (n.i.) and probability summation (p.s.) are also incorporated into the model. Model predictions are compared to psychophysical results of Gescheider et al. (). The performance of the model regarding the effects of contactor size is very good. In addition to predicting approximately 3?dB improvement of thresholds when the contactor area is doubled, the model also reveals nonlinear contributions of p.s. and n.i. Furthermore, the model asserts that thresholds are largely governed by neural integration when small contactors are used. These and other findings discussed in the article show that the presented model is a helpful tool for formulating testable hypotheses. Although the model can also simulate some temporal summation effects, simulation results do not conform well to previous data on temporal response properties. Thus, the model needs to be refined in that respect.  相似文献   

13.
A computational model based on previous physiological and psychophysical data is presented for the human Pacinian (P) psychophysical channel. The model can predict the probability of detection in simple psychophysical tasks, and hence psychometric functions and thresholds. The model simulates stimulating variable and fixed glabrous skin sites with different-sized contactors and includes spatial variation of monkey P-fiber sensitivities. Therefore, it is especially suitable for studying spatial summation, i.e. the improvement of threshold with increasing contactor area. Selective contributions of neural integration (n.i.) and probability summation (p.s.) are also incorporated into the model. Model predictions are compared to psychophysical results of Gescheider et al. (2005). The performance of the model regarding the effects of contactor size is very good. In addition to predicting approximately 3 dB improvement of thresholds when the contactor area is doubled, the model also reveals nonlinear contributions of p.s. and n.i. Furthermore, the model asserts that thresholds are largely governed by neural integration when small contactors are used. These and other findings discussed in the article show that the presented model is a helpful tool for formulating testable hypotheses. Although the model can also simulate some temporal summation effects, simulation results do not conform well to previous data on temporal response properties. Thus, the model needs to be refined in that respect.  相似文献   

14.
Thresholds of the Non-Pacinian I (NP I) channel were measured using a two-interval forced-choice paradigm, a technique independent of the subject's criterion. The studies were performed using the terminal phalanx of the human middle finger with a 40-Hz vibratory stimulus. Unlike most of the previous experiments performed in our laboratory, a contactor surround was not used. This was done to enable comparison with population models of mechanoreceptive fibers in the literature. Since the Pacinian (P) channel and NP I channel have similar vibrotactile thresholds at 40?Hz, a forward-masking procedure was used to elevate the thresholds of the P channel with respect to the NP I channel. While it has been established that the Pacinian fibers are entrained at high stimulus levels, the P channel can be perceptually masked using a 250-Hz stimulus presented prior to the 40-Hz test stimulus. The masking functions were found to be approximately linear on log-log axes and the threshold shifts were found to increase as the masking-stimulus levels increased. The results are discussed in relation to previous studies that were performed at various stimulation sites by using a contactor surround or not. A companion paper presents the variation of NP I-channel thresholds, measured using the methods described herein, and addresses the effects of stimulation along the proximo-distal axis of the phalanx. The companion paper also discusses the predictions of a computational model, recently proposed, in light of the empirical results presented.  相似文献   

15.
BackgroundThe ATP-sensitive K+ (K(ATP)) channel is found in a variety of tissues extending from the heart and vascular smooth muscles to the endocrine pancreas and brain. Common to all K(ATP) channels is the pore-forming subunit Kir6.x, a member of the family of small inwardly rectifying K+ channels, and the regulatory subunit sulfonylurea receptor (SURx). In insulin secreting β-cells in the endocrine part of the pancreas, where the channel is best studied, the K(ATP) channel consists of Kir6.2 and SUR1. Under physiological conditions, the K(ATP) channel current flow is outward at membrane potentials more positive than the K+ equilibrium potential around ?80 mV. However, K(ATP) channel kinetics have been extensively investigated for inward currents and the single-channel kinetic model is based on this type of recording, whereas only a limited amount of work has focused on outward current kinetics.MethodsWe have estimated the kinetic properties of both native and cloned K(ATP) channels under varying ionic gradients and membrane potentials using the patch-clamp technique.ResultsAnalyses of outward currents in K(ATP) and cloned Kir6.2ΔC26 channels, alone or co-expressed with SUR1, show openings that are not grouped in bursts as seen for inward currents. Burst duration for inward current corresponds well to open time for outward current.ConclusionsOutward K(ATP) channel currents are not grouped in bursts regardless of membrane potential, and channel open time for outward currents corresponds to burst duration for inward currents.  相似文献   

16.
Thresholds of the Non-Pacinian I (NP I) channel were measured using a two-interval forced-choice paradigm, a technique independent of the subject's criterion. The studies were performed using the terminal phalanx of the human middle finger with a 40-Hz vibratory stimulus. Unlike most of the previous experiments performed in our laboratory, a contactor surround was not used. This was done to enable comparison with population models of mechanoreceptive fibers in the literature. Since the Pacinian (P) channel and NP I channel have similar vibrotactile thresholds at 40?Hz, a forward-masking procedure was used to elevate the thresholds of the P channel with respect to the NP I channel. While it has been established that the Pacinian fibers are entrained at high stimulus levels, the P channel can be perceptually masked using a 250-Hz stimulus presented prior to the 40-Hz test stimulus. The masking functions were found to be approximately linear on log-log axes and the threshold shifts were found to increase as the masking-stimulus levels increased. The results are discussed in relation to previous studies that were performed at various stimulation sites by using a contactor surround or not. A companion paper presents the variation of NP I-channel thresholds, measured using the methods described herein, and addresses the effects of stimulation along the proximo-distal axis of the phalanx. The companion paper also discusses the predictions of a computational model, recently proposed, in light of the empirical results presented.  相似文献   

17.
Psychophysical thresholds for the detection of a 300-Hz burst of vibration applied to the thenar eminence were measured for stimuli applied to the skin through 1.5 cm2 and through 0.05 cm2 contactors. Thresholds were approximately 13 dB lower when the area of the contactor was 1.5 cm2 than when it was 0.05 cm2. The difference between the thresholds measured with the large and small contactors was significantly reduced when only the lowest thresholds obtained in the testing sessions were considered. This result supports the hypothesis that one component of spatial summation in the P channel is probability summation. In addition, threshold measurements within a session were less variable when measured with the 1.5 cm2 contactor. We conclude that spatial summation in the P channel is a joint function of two processes that occur as the areal extent of the stimulus increases: probability summation in which the probability of exceeding the psychophysical detection threshold increases as the number of receptors of varying sensitivities increases, and neural integration in which neural activity originating from separate receptors is combined within the central nervous system rendering the channel more sensitive to the stimulus.  相似文献   

18.
Detection thresholds and difference limens were measured for 16 subjects ranging from 19 to 91 years of age. The stimuli were 250-Hz bursts of vibration applied through a 3.0-cm2 contactor to the thenar eminence of the right hand. Detection thresholds were higher in older than in younger subjects, as were the absolute values of difference limens. When the difference limen was expressed in relative terms as the proportion by which two stimuli had to differ in amplitude to be discriminated (δA/A), discriminative capacities were unaffected by aging except for stimuli slightly above the detection threshold, in which case the difference limens of older subjects were significantly higher than those of younger subjects. The results are consistent with the hypothesis that elevations in the detection thresholds of older subjects are the results of reduced afferent input to central brain centers that, with regard to their capacity to detect the presence of threshold-level stimuli and to discriminate differences among suprathreshold stimuli, are relatively unaffected by aging.  相似文献   

19.
The goal of this study was to investigate the relationship between the psychophysical vibrotactile thresholds of the Pacinian (P) channel and the mechanical properties of the skin at the fingertip. Seven healthy adult subjects (age: 23–30) participated in the study. The mechanical stimuli were 250-Hz sinusoidal bursts and applied with cylindrical contactor probes of radii 1, 2, and 3.5?mm on three locations at the fingertip. The duration of each burst was 0.5?s (rise and fall time: 50?ms). The subjects performed a two-interval forced-choice task while the stimulus levels changed for tracking the threshold at 75% probability of detection. There were significant main effects of contactor radius and location (two-way ANOVA, values of p?<?0.001). The thresholds decreased as the contactor radius increased (i.e., spatial summation effect) at all locations. The thresholds were lowest near the whorl at the fingertip. Additionally, we measured the mechanical impedance (specifically, the storage and loss moduli) at the contact locations. The storage moduli did not change with the contactor location, but the loss moduli were lowest near the whorl. While the loss moduli decreased, the storage moduli increased (e.g., more springiness) as the contactor radius increased. There was moderate and barely significant correlation between the absolute thresholds and the storage moduli (r?=?0.650, p?=?0.058). However, the correlation between the absolute thresholds and the loss moduli was high and very significant (r?=?0.951, p?<?0.001). The results suggest that skin mechanics may be important for locally shaping psychophysical detection thresholds, which would otherwise be expected to be constant due to uniform Pacinian innervention density at the fingertip.  相似文献   

20.
It has not been established whether the smallest perceptible change in the intensity of vibrotactile stimuli depends on the somatosensory channel mediating the sensation. This study investigated intensity difference thresholds for vibration using contact conditions (different frequencies, magnitudes, contact areas, body locations) selected so that perception would be mediated by more than one psychophysical channel. It was hypothesized that difference thresholds mediated by the non-Pacinian I (NPI) channel and the Pacinian (P) channel would differ. Using two different contactors (1-mm diameter contactor with 1-mm gap to a fixed surround; 10-mm diameter contactor with 2-mm gap to the surround) vibration was applied to the thenar eminence and the volar forearm at two frequencies (10 and 125?Hz). The up-down-transformed-response method with a three-down-one-up rule provided absolute thresholds and also difference thresholds at various levels above the absolute thresholds of 12 subjects (i.e., sensation levels, SLs) selected to activate preferentially either single channels or multiple channels. Median difference thresholds varied from 0.20 (thenar eminence with 125-Hz vibration at 10?dB SL) to 0.58 (thenar eminence with 10-Hz vibration at 20?dB SL). Median difference thresholds tended to be lower for the P channel than the NPI channel. The NPII channel may have reduced difference thresholds with the smaller contactor at 125?Hz. It is concluded that there are large and systematic variations in difference thresholds associated with the frequency, the magnitude, the area of contact, and the location of contact with vibrotactile stimuli that cannot be explained without increased understanding of the perception of supra-threshold vibrotactile stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号