首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Using the paper disc-agar plate method, a number of fatty and related acids have been tested for tested activity for inhibiting the growth of Chlorella pyrenoidosa Chick. Of the saturated acids, a peak in growth inhibiting activity wax observed in the C7–C12 range, where inhibition wax observed when solutions down to 0.02 M were applied to the discs. Most of the unsaturated acids tested showed greater inhibition than did the corresponding saturated acids. Acrylic acid showed detectable inhibition at 0.001 M concentration.  相似文献   

2.
Fatty acid translocase (FAT/CD36) is one of several proteins implicated in receptor-mediated uptake of long-chain fatty acids (LCFAs). We have tested whether levels of FAT/CD36 correlate with cellular oleic acid import, using a Tet-Off inducible transfected CHO cell line. Consistent with our previous findings, FAT/CD36 was enriched in lipid raft-derived detergent-resistant membranes (DRMs) that also contained caveolin-1, the marker protein of caveolae. Furthermore in transfected cells, plasma membrane FAT/CD36 co-localized extensively with the lipid raft-enriched ganglioside GM1, and partially with a caveolin-1-EGFP fusion protein. Nevertheless, even at high levels of expression, FAT/CD36 did not affect uptake of oleic acid. We propose that the ability of FAT/CD36 to mediate enhanced uptake of LCFAs is dependent on co-expression of other proteins or factors that are lacking in CHO cells.  相似文献   

3.
Kim CH  Lee SJ  Ha JK  Kim WY  Lee SS 《Anaerobe》2008,14(1):19-28
Responses of the rumen anaerobic fungus, Piromyces communis M014, to octadecanic long-chain fatty acids (LCFAs) were evaluated by measuring total and hydrogen gas productions, filter paper (FP) cellulose degradation and polysaccharidase enzyme activities. Octadecanic acids (stearic acid, C(18:0); oleic acid, C(18:1); linoleic acid, C(18:2) and linolenic acid, C(18:3)) were emulsified by ultrasonication under anaerobic conditions, and added to the medium at the level of 0.001%. When P. communis M014 was grown in culture with stearic and oleic acids, the cumulative gas production, FP cellulose digestion and enzyme activities were significantly (p<0.05) increased in the early incubation times relative to those for the control. However, the addition of linolenic acid inhibited all of the investigated parameters, including cellulose degradation, enzyme activities and gas production, up to 168h incubation. These results indicated that stearic and oleic acids tended to have stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effect on cellulolysis by the rumen fungus. The fungus, P. communis M014, can biohydrogenate C(18) unsaturated fatty acids to escape from their toxic effects. Therefore, in this study, the results indicated that the more highly the added C(18) LCFA to the fungal culture was unsaturated, the higher the inhibition of gas production and cellulase enzyme activity was.  相似文献   

4.
分化聚类36(cluster of differentiation 36,CD36)是一种位于细胞表面的膜蛋白受体,可以结合并转运脂肪酸。内质网膜蛋白4B (Nogo-B)在肝脏中调控脂肪酸代谢而影响肝癌的发展。目前并不清楚CD36和Nogo-B的相互作用是否能够影响乳腺癌细胞的增殖和迁移。本研究在三阴性乳腺癌(triple-negative breast cancer,TNBC)细胞中同时干预CD36与Nogo-B的表达来探索它们对细胞增殖与迁移的影响。结果表明在三阴性乳腺癌细胞中,单独抑制CD36或Nogo-B的表达都能够抑制细胞的增殖与迁移;同时抑制CD36与Nogo-B的表达时,这种抑制效果更加明显,且Vimentin、B细胞淋巴瘤-2(B-cell lympoma-2,BCL2)和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)的表达受到抑制。在小鼠移植瘤模型中,E0771细胞转染CD36或Nogo-B的siRNA后成瘤能力降低;同时敲减CD36和Nogo-B时,肿瘤生长速度显著减慢。机制研究发现,抑制CD36和Nogo-B表达能够抑制脂肪酸结合蛋白4(fatty acid binding protein 4,FABP4)和脂肪酸转运蛋白4(fatty acid transport protein 4,FATP4) mRNA的含量,同时CD36和Nogo-B过表达刺激的细胞增殖被FABP4的siRNA降低,预示着抑制乳腺癌细胞中CD36与Nogo-B的表达可能通过抑制脂肪酸的吸收和转运而抑制细胞的生长和迁移。此外,抑制CD36与Nogo-B的表达可激活P53-P21-Rb信号通路,参与抑制CD36与Nogo-B表达而抑制的细胞增殖与迁移。本研究证明同时抑制CD36和Nogo-B的表达能够协同抑制三阴性乳腺癌细胞的增殖和迁移,为临床抗三阴性乳腺癌药物的开发提供了新的靶点。  相似文献   

5.
Abstract

This study was conducted to determine the effects of long chain fatty acids (LCFAs) on triacylglycerol (TAG) content, as well as on genes associated with lipid synthesis and fatty acid composition in bovine satellite cells. Both saturated (palmitic and stearic) and unsaturated (oleic and linoleic) fatty acids stimulated the TAG accumulation at a concentration of 100?µM and oleate increased it significantly more than stearate and palmitate. The results revealed that the lipid droplet formation was markedly stimulated by linoleate and oleate at 100?µM. Compared to control, the expressions of adipose triglyceride lipase, carnitine acyltransferase 1 and the fatty acid translocase 36 were upregulated by LCFAs. All the fatty acids also significantly increased diacylglycerol acyltransferase 2 than the untreated control (p?<?0.05). The monounsaturated fatty acids significantly increased (p?<?0.05) in response to oleate and linoleate compared to the control as did the polyunsaturated fatty acids (p?<?0.05), in addition to stearate, linoleate and oleate. In contrast, saturated fatty acids were significantly decreased in the oleate and linoleate-treated groups. The study results contribute to our enhanced understanding of LCFAs’ regulatory roles on the bovine cell lipid metabolism.  相似文献   

6.
Fatty acids are generally considered as agonists for peroxisome proliferator-activated receptors (PPARs). Fatty acids have been shown to bind to and transactivate PPARs; it is not known whether fatty acids act as generalized agonists for PPARs in different cell types, and thus, stimulate the expression of PPAR-regulated target genes. Here, we investigated the potency of unsaturated fatty acids on transactivation of PPRE, DNA-binding activity of PPARs, and the expression of a PPAR-regulated gene product, CD36. Docosahexaenoic acid (DHA) suppressed the basal and PPAR agonist-induced transactivation of PPRE, and DNA binding of PPARs in colon tumor cells (HCT116). The suppression of PPAR transactivation by DHA leads to reduced expression of CD36 in HCT116 cells and human monocytic cells (THP-1) as determined by promoter reporter gene assay and flow cytometric analysis. Our results demonstrate that DHA and other unsaturated fatty acids act as antagonists instead of agonists for transactivation of PPRE and PPAR-regulated gene expression in the cell lines tested. These results suggest that PPAR-mediated gene expression and cellular responses can be dynamically modulated by different types of dietary fatty acids consumed.  相似文献   

7.
In this study, we show that 5α‐reductase derived from rat fresh liver was inhibited by certain aliphatic free fatty acids. The influences of chain length, unsaturation, oxidation, and esterification on the potency to inhibit 5α‐reductase activity were studied. Among the fatty acids we tested, inhibitory saturated fatty acids had C12–C16 chains, and the presence of a C?C bond enhanced the inhibitory activity. Esterification and hydroxy compounds were totally inactive. Finally, we tested the prostate cancer cell proliferation effect of free fatty acids. In keeping with the results of the 5α‐reductase assay, saturated fatty acids with a C12 chain (lauric acid) and unsaturated fatty acids (oleic acid and α‐linolenic acid) showed a proliferation inhibitory effect on lymph‐node carcinoma of the prostate (LNCaP) cells. At the same time, the testosterone‐induced prostate‐specific antigen (PSA) mRNA expression was down‐regulated. These results suggested that fatty acids with 5α‐reductase inhibitory activity block the conversion of testosterone to 5α‐dihydrotestosterone (DHT) and then inhibit the proliferation of prostate cancer cells.  相似文献   

8.
Recent studies have identified a novel family of oxidized phosphatidylcholines (oxPC(CD36)) that serve as highly specific ligands for scavenger receptor CD36. oxPC(CD36) accumulate in vivo and mediate macrophage foam cell formation as well as promote platelet hyper-reactivity in hyperlipidemia via CD36. The structural basis of oxPC(CD36) binding to CD36 has not been elucidated. We used liquid-phase binding to glutathione S-transferase fusion proteins containing various regions of CD36 to initially identify the region spanning CD36 amino acids 157-171 to contain a major binding site for oxPC(CD36). A bell-shaped pH profile and salt concentration dependence suggest an electrostatic mechanism of the binding. Two conserved, positively charged amino acids in the region 157-171 (lysines at positions 164 and 166) were identified as critical for oxPC(CD36) and oxidized low density lipoprotein (oxLDL) binding to CD36. Lysine neutralization with chemical modifier or site-directed mutagenesis of lysine 164/166 to alanine or glutamate, but not to arginine, abolished binding. Cells expressing full-length CD36 with mutated lysines (164 and 166) failed to recognize oxPC(CD36) and oxLDL. Synthetic peptides mimicking the CD36 binding site, but not mutated or scrambled peptides, effectively prevented: (i) oxLDL binding to CD36, (ii) macrophage foam cell formation induced by oxLDL, and (iii) platelet activation by oxPC(CD36). These data indicate that CD36 (160-168) represents the core of the oxPC(CD36) binding site with lysines 164/166 being indispensable for the binding.  相似文献   

9.
The clustering of risk factors including dyslipidemia, hyperglycemia, and hypertension is highly atherogenic along with the excess of remnants from triglyceride (TG)-rich lipoproteins. CD36 is involved in the uptake of long-chain fatty acids (LCFAs) in muscles and small intestines. Patients with CD36 deficiency (CD36-D) have postprandial hypertriglyceridemia, insulin resistance, and hypertension. To investigate the underlying mechanism of postprandial hypertriglyceridemia in CD36-D, we analyzed lipoprotein profiles of CD36-D patients and CD36-knockout (CD36-KO) mice after oral fat loading (OFL). In CD36-D patients, plasma triglycerides, apolipoprotein B-48 (apoB-48), free fatty acids (FFAs), and free glycerol levels were much higher after OFL than those of controls, along with increases in chylomicron (CM) remnants and small dense low-density lipoprotein (sdLDL) particles. In CD36-KO mice, lipoproteins smaller than CM in size in plasma and intestinal lymph were markedly increased after OFL and mRNA levels of genes involved in FFA biosynthesis, such as fatty acid binding protein (FABP)-1 and FAS, were significantly increased. These results suggest that CD36-D might increase atherosclerotic risk by enhancing plasma level of CM remnants due to the increased synthesis of lipoproteins smaller than CM in size in the intestine.  相似文献   

10.
An acidic phospholipase A2 (EC 3.1.1.4) isolated from Naja naja siamensis venom blocks acetylcholine receptor function in excitable post synaptic membrane vesicles from Torpedo californica electroplax. Specifically, the phospholipase acts catalytically to prevent the large increase in sodium efflux induced by carbamylcholine. The efflux inhibition can be correlated with specific hydrolysis of phospholipids in the membrane. During the time course of inhibition, the binding affinity of the receptor for carbamylcholine increases 10-fold, a phenomenon associated with receptor desensitization. Prolonged treatment of the membranes with phospholipase A2 causes nonspecific lysis of the vesicles. Incorporation of unsaturated fatty acids or lysophosphatidylcholine into Torpedo membranes also blocks carbamylcholine-induced sodium efflux. The fatty acids have no effect on the binding affinity of the receptor, and lysophosphatidylcholine causes a small decrease in receptor affinity for carbamylcholine. Lysophosphatidylethanolamine and most saturated fatty acids have no direct effect on sodium efflux, but the lysophosphatides cause vesicle lysis. All of the inhibitory effects of the phospholipase and the fatty acids can be reversed and/or prevented by treatment of the vesicles with bovine serum albumin.  相似文献   

11.
Because of the importance of long-chain fatty acids (LCFAs) as a myocardial energy substrate, myocardial LCFA metabolism has been of particular interest for the understanding of cardiac pathophysiology. Recently, by using radiolabeled LCFA analogues, myocardial LCFA metabolism has been clinically evaluated, which revealed a total defect of myocardial LCFA accumulation in a small number of subjects. The mechanism for the cellular LCFA uptake process is still disputable, but recent results suggest that fatty acid translocase (FAT)/CD36 is a transporter in the heart. In the present study, we analyzed mutations and protein expression of the FAT/CD36 gene in 47 patients who showed total lack of the accumulation of a radiolabeled LCFA analogue in the heart. All the patients carried two mutations in the FAT/CD36 gene, and expression of the FAT/CD36 protein was not detected on either platelet or monocyte membranes. Our results showed the link between mutations of the FAT/CD36 gene and a defect in the accumulation of LCFAs in the human heart.  相似文献   

12.
The binding of cAMP to the chemotactic cAMP receptor in intact Dictyostelium discoideum cells and isolated membranes is strongly inhibited by unsaturated fatty acids. In isolated membranes, cis-unsaturated fatty acids decreased the number of accessible cAMP binding sites, without significantly altering their affinity. Most potent were C18 and C20 cis-poly unsaturated fatty acids, like arachidonic acid, linoleic acid and linolenic acid. Trans-unsaturated fatty acid was less potent than its cis isomer, while saturated fatty acids did not affect the binding of cAMP to receptors at all. Oxidation reactions were not important for the effect of unsaturated fatty acids. When membranes were preincubated with millimolar concentrations of Ca2+, the effect of unsaturated fatty acids was strongly diminished. Mg2+ was ineffective. Ca2+, if presented after the incubation of membranes with unsaturated fatty acids, did not reverse the inhibitory effect. The specificity of the fatty acid effect, and the interference with Ca2+, but not Mg2+, suggest that the properties of the cAMP receptor are changed as a result of alterations in the lipid bilayer structure of the membrane.  相似文献   

13.
The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly‐iodinated xanthene dye and an FDA‐approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein–protein interactions (PPIs) with a remarkably consistent median inhibitory concentration (IC50) in the 5‐ to 30‐μM range. Because ErB exhibits metachromasy, that is, color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd) and stoichiometry (nb) using spectrophotometric methods. Binding was reversible, and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 μM for BSA and CD40L, respectively) were in good agreement with that expected from the PPI inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5–6 and 8–9 for BSA and CD40L, respectively), indicating the possibility of nonspecific binding of the flat and rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Sulfo-N-succinimidyl esters of LCFAs are a powerful tool to investigate the functional significance of plasmalemmal proteins in the LCFA uptake process. This notion is based on the following observations. First, sulfo-N-succinimidyl oleate (SSO) was found to inhibit the bulk of LCFA uptake into various cell types, i.e. rat adipocytes, type II pneumocytes and cardiac myocytes. Second, using cardiac giant membrane vesicles, in which LCFA uptake can be investigated in the absence of mitochondrial -oxidation, SSO retained the ability to largely inhibit LCFA uptake, indicating that inhibition of LCFA transsarcolemmal transport is its primary action. Third, SSO has no inhibitory effect on glucose and octanoate uptake into giant membrane vesicles derived from heart and skeletal muscle, indicating that its action is specific for LCFA uptake. Finally, SSO specifically binds to the 88 kDa plasmalemmal fatty acid transporter FAT, a rat homologue of human CD36, resulting in an arrest of the transport function of this protein.In addition to its inhibitory action at the plasma membrane level, evidence is presented for the lack of a direct inhibitory effect on subsequent LCFA metabolism. First, the relative contribution of oxidation and esterification to LCFA uptake is not altered in the presence of SSO. Second, isoproterenol-mediated channeling of LCFAs into oxidative pathways is not affected by sulfo-N-succinimidyl palmitate (SSP). As an example of its application we used SSP to study the role of FAT/CD36 in contraction- and insulin-stimulated LCFA uptake by cardiac myocytes , showing that this transporter is a primary site of regulation of cellular LCFA utilization.  相似文献   

16.
A series of hydroxylic compounds (1–10, NK-154 and NK-168) have been assayed for the inhibition of three physiologically relevant carbonic anhydrase isozymes, the cytosolic isozymes I, II and tumor-associated isozyme IX. The investigated compounds showed inhibition constants in the range of 0.068–4003, 0.012–9.9 and 0.025–115?μm at the hCA I, hCA II and hCA IX enzymes, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico studies were also applied. Molecular docking scores of the studied compounds are calculated using scoring algorithms, namely Glide/induced fit docking. The inhibitory potencies of the novel compounds were analyzed at the human isoforms hCA I, hCA II and hCA IX as targets and the KI values were calculated.  相似文献   

17.
SARS-CoV-2 main protease (Mpro) plays an essential role in proteolysis cleavage that promotes coronavirus replication. Thus, attenuating the activity of this enzyme represents a strategy to develop antiviral agents. We report inhibitory effects against Mpro of 40 synthetic chalcones, and cytotoxicity activities, hemolysis, and in silico interactions of active compounds. Seven of them bearing a (E)-3-(furan-2-yl)-1-arylprop-2-en-1-one skeleton ( 10 , 28 , and 35–39 ) showed enzyme inhibition with IC50 ranging from 13.76 and 36.13 μM. Except for 35 and 36 , other active compounds were not cytotoxic up to 150 μM against THP-1 and Vero cell lines. Compounds 10 , and 35–39 showed no hemolysis while 28 was weakly hemotoxic at 150 μM. Moreover, molecular docking showed interactions between compound 10 and Mpro (PDBID 5RG2 and 5RG3) with proximity to cys145 and His41, suggesting a covalent binding. Products of the reaction between chalcones and cyclohexanethiol indicated that this binding could be a Michael addition type.  相似文献   

18.
A glycolipid fraction was isolated from Corynebacterium ovis (C. pseudotuberculosis). It had [α]D25 = + 63.2° (C = 0.5, CHCl3) and m.p. 43–46°C; the sugar content was 26%, determined as trehalose. Alkaline hydrolysis of the isolated fraction found trehalose as the sole water-soluble component, while glucose was found only after acid hydrolysis of the aqueous phase. Saturated and unsaturated short-chain mycolic acids with carbon atoms ranging from C30 to C36 were the constituents of the fatty acid moiety. The glycolipid fraction of C. ovis is therefore assumed to be a mixture of trehalose esters in which the trehalose molecule is esterified by saturated and unsaturated short-chain (C30–C36) mycolic acids.  相似文献   

19.
A small library of (E) α,β-unsaturated fatty acids was prepared, and 20 different saturated and mono-unsaturated fatty acids differing in chain length were subjected to Ellman’s assays to determine their ability to act as inhibitors for AChE or BChE. While the compounds were only very weak inhibitors of BChE, seven molecules were inhibitors of AChE holding IC50?=?4.3–12.8?M with three of them as significant inhibitors of this enzyme. The results have shown trans 2-mono-unsaturated fatty acids are better inhibitors for AChE than their saturated analogs. Furthermore, the screening results indicate that the chain length is crucial for obtaining an inhibitory efficacy. The best results were obtained for (2E) eicosenoic acid (14) showing inhibition constants Ki?=?1.51?±?0.09?M and Ki′?=?7.15?±?0.55?M. All tested compounds were mixed-type inhibitors with a dominating competitive part. Molecular modelling calculations indicate a different binding mode of active/inactive compounds for the enzymes AChE and BChE.  相似文献   

20.
Fatty acid composition of the phospholipids of mouse LM cells grown in suspension culture in serum-free chemically defined medium was modified by supplementing the medium with various fatty acids bound to bovine serum albumin.Following supplementation with saturated fatty acids of longer than 15 carbons (100 μM) profound inhibition of cell growth occurred; this inhibitory effect was completely abolished when unsaturated fatty acids were added at the same concentration. Supplementing with unsaturated fatty acids such as linoleic acid, linolenic acid or arachidonic acid had no effect on the cell growth.Fatty acid composition of membrane phospholipids could be manipulated by addition of different fatty acids. The normal percentage of unsaturated fatty acids in LM cell membrane phospholipids (63%) was reduced to 35–41% following incorporation of saturated fatty acids longer than 15 carbon atoms and increased to 72–82% after addition of unsaturated fatty acids.A good correlation was found between the unsaturated fatty acid content of membrane phospholipids and cell growth. When incorporated saturated fatty acids reduced the percentage of unsaturated fatty acids in membrane phospholipids to less than 50%, severe inhibition of the cell growth was found. Simultaneous addition of an unsaturated fatty acid completely abolished this effect of saturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号