首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Decisions are said to be ‘risky’ when they are made in environments with uncertainty caused by nature. By contrast, a decision is said to be ‘trusting’ when its outcome depends on the uncertain decisions of another person. A rapidly expanding literature reveals economically important differences between risky and trusting decisions, and further suggests these differences are due to ‘betrayal aversion’. While its neural foundations have not been previously illuminated, the prevailing hypothesis is that betrayal aversion stems from a desire to avoid negative emotions that arise from learning one''s trust was betrayed. Here, we provide evidence from an fMRI study that supports this hypothesis. In particular, our data indicate that the anterior insula modulates trusting decisions that involve the possibility of betrayal.  相似文献   

2.

Background

Previous research has shown that emotion can significantly impact decision-making in humans. The current study examined whether or not and how situationally induced emotion influences people to make inter-temporal choices.

Methods

Affective pictures were used as experiment stimuli to provoke emotion, immediately followed by subjects’ performance of a delay-discounting task to measure impulsivity during functional magnetic resonance imaging.

Results

Results demonstrate a subsequent process of increased impulsive decision-making following a prior exposure to both high positive and negative arousal stimuli, compared to the experiment subjects’ experiences with neutral stimuli. Findings indicate that increased impulsive decision-making behaviors can occur with high arousal and can be characterized by decreased activities in the cognitive control regions such as prefronto-parietal regions.

Conclusions

These results suggest that ‘stabilization of high emotional arousal’ may facilitate a reduction of impulsive decision-making and implementation of longer term goals.  相似文献   

3.

Background

Parkinson''s disease (PD) patients are deficient in time estimation. This deficit improves after dopamine (DA) treatment and it has been associated with decreased internal timekeeper speed, disruption of executive function and memory retrieval dysfunction.

Methodology/Findings

The aim of the present study was to explore the neurophysiologic correlates of this deficit. We performed functional magnetic resonance imaging on twelve PD patients while they were performing a time reproduction task (TRT). The TRT consisted of an encoding phase (during which visual stimuli of durations from 5s to 16.6s, varied at 8 levels were presented) and a reproduction phase (during which interval durations were reproduced by a button pressing). Patients were scanned twice, once while on their DA medication (ON condition) and once after medication withdrawal (OFF condition). Differences in Blood-Oxygenation-Level-Dependent (BOLD) signal in ON and OFF conditions were evaluated. The time course of activation in the brain areas with different BOLD signal was plotted. There were no significant differences in the behavioral results, but a trend toward overestimation of intervals ≤11.9s and underestimation of intervals ≥14.1s in the OFF condition (p<0.088). During the reproduction phase, higher activation in the precuneus was found in the ON condition (p<0.05 corrected). Time course was plotted separately for long (≥14.1s) and short (≤11.9s) intervals. Results showed that there was a significant difference only in long intervals, when activity gradually decreased in the OFF, but remained stable in the ON condition. This difference in precuneus activation was not found during random button presses in a control task.

Conclusions/Significance

Our results show that differences in precuneus activation during retrieval of a remembered duration may underlie some aspects of time perception deficit in PD patients. We suggest that DA medication may allow compensatory activation in the precuneus, which results in a more accurate retrieval of remembered interval duration.  相似文献   

4.
Adult subjects were asked to recognize a hierarchical visual stimulus (a letter) while their attention was drawn to either the global or local level of the stimulus. Event-related potentials (ERP) and psychophysical indices (reaction time and percentage of correct responses) were measured. An analysis of psychophysical indices showed the global level precedence effect, i.e., the increase in a small letter recognition time when this letter is a part of incongruent stimulus. An analysis of ERP components showed level-related (global vs. local) differences in the timing and topography of the brain organization of perceptual processing and regulatory mechanisms of attention. Visual recognition at the local level was accompanied by (1) stronger activation of the visual associative areas (Pz and T6) at the stage of sensory features analysis (P1 ERP component), (2) involvement mainly of inferior temporal cortices of the right hemisphere (T6) at the stage of sensory categorization (P2 ERP component), and (3) involvement of prefrontal cortex of the right hemisphere at the stage of the selection of the relevant features of the target (N2 ERP component). Visual recognition at the global level was accompanied by (1) pronounced involvement of mechanisms of early sensory selection (N1 ERP component), (2) prevailing activation of parietal cortex of the right hemisphere (P4) at the stage of sensory categorization (P2 ERP component) as well as at the stage of the target stimulus identification (P3 ERP component). It is suggested that perception at the global level of the hierarchical stimulus is related primarily to the analysis of the spatial features of the stimulus in the dorsal visual system whereas the perception at the local level primarily involves an analysis of the object-related features in the ventral visual system.  相似文献   

5.
Brain‐derived neurotrophic factor (BDNF) signaling is implicated in the etiology of many psychiatric disorders associated with altered emotional processing. Altered peripheral (plasma) BDNF levels have been proposed as a biomarker for neuropsychiatric disease risk in humans. However, the relationship between peripheral and central BDNF levels and emotional brain activation is unknown. We used heterozygous BDNF knockdown rats (BDNF+/?) to examine the effects of genetic variation in the BDNF gene on peripheral and central BDNF levels and emotional brain activation as assessed by awake functional magnetic resonance imaging (fMRI). BDNF+/? and control rats were trained to associate a flashing light (conditioned stimulus; CS) with foot‐shock, and brain activation in response to the CS was measured 24 h later in awake rats using fMRI. Central and peripheral BDNF levels were decreased in BDNF+/? rats compared with control rats. Activation of fear circuitry (amygdala, periaqueductal gray, granular insular) was seen in control animals; however, activation of this circuitry was absent in BDNF+/? animals. Behavioral experiments confirmed impaired conditioned fear responses in BDNF+/? rats, despite intact innate fear responses. These data confirm a positive correlation [r = 0.86, 95% confidence interval (0.55, 0.96); P = 0.0004] between peripheral and central BDNF levels and indicate a functional relationship between BDNF levels and emotional brain activation as assessed by fMRI. The results demonstrate the use of rodent fMRI as a sensitive tool for measuring brain function in preclinical translational studies using genetically modified rats and support the use of peripheral BDNF as a biomarker of central affective processing.  相似文献   

6.
The current paper proposes a novel model for integrative learning of proactive visual attention and sensory-motor control as inspired by the premotor theory of visual attention. The model is characterized by coupling a slow dynamics network with a fast dynamics network and by inheriting our prior proposed multiple timescales recurrent neural networks model (MTRNN) that may correspond to the fronto-parietal networks in the cortical brains. The neuro-robotics experiments in a task of manipulating multiple objects utilizing the proposed model demonstrated that some degrees of generalization in terms of position and object size variation can be achieved by organizing seamless integration of the proactive object-related visual attention and the related sensory-motor control into a set of action primitives in the distributed neural activities appearing in the fast dynamics network. It was also shown that such action primitives can be combined in compositional ways in acquiring novel actions in the slow dynamics network. The experimental results presented substantiate the premotor theory of visual attention.  相似文献   

7.
Several authors have reported on high-sensitivity measurement of oxygen-dependent low-level chemiluminescence (CL) from Maillard reactions (MR), i.e. nonenzymatic amino-carbonyl reactions between reducing sugars and amino acids (also referred to as nonenzymatic browning). Here we report for the first time, that light from Maillard reactions can be seen by the human eye and also can be photographed. In parallel with visual perception and photography CL was monitored by means of a CL-detection programme of a liquid scintillation counter (LSC, single photon rate counting). CL emission spectrum was recorded by a monochromator-microchannel plate photomultiplier arrangement. CL intensity from reaction of 6-aminocaproic acid with D-ribose (200 mg each) in 5 mL H2O at pH 11 at 95°C was high enough for visual perception after adaptation to absolute darkness. Reaction in dimethylsulphoxide (DMSO) exhibited strongly enhanced CL (10 mg each in 5 mL were sufficient for visual detection) and could be photographed (15 minutes' exposure, ASA 6400); all characteristics of Maillard specific CL (O2-dependence, no CL from nonreducing sugars, inhibition by sulphur compounds) remained. Visual detection of CL and measurement by LSC were in full concordance. The CL emission spectrum showed two broad peaks at around 500 nm and 695 nm. Fluorescence emission of the brown reaction mixture matched the bluegreen part of the CL emission spectrum. Emission of visible light during Maillard reactions may partly originate from oxygen-dependent generation of excited states and energy transfer to simultaneously formed fluorescent products of the browning reaction.  相似文献   

8.
The binocular disparity of two retina images is a main cue of stereoscopic vision. However, the global dependency between brain response and binocular disparity still remains unclear. Here, we used functional Magnetic Resonance Imaging (fMRI) to identify stereopsis-related brain regions with a modified Random Dot Stereogram (RDS) and plotted the activation variation curves under different disparity size. In order to eliminate the confounding shape difference between the stereogram and the plane, commonly seen in RDS, we modified the RDS to a checkerboard version. We found that V3A, V7 and MT+/V5 in dorsal visual stream were activated in stereoscopic experiment, while little activation was found in ventral visual regions. According to the activation trends, 13 subjects were divided into three groups: 5 subjects with turning points (a shift from increased to decreased activation), 5 subjects without turning points and 3 subjects with activation unrelated to disparity. We inferred that the dorsal visual stream primarily processes spatial depth information, rather than shape information.  相似文献   

9.
Emotive aspects of stimuli have been shown to modulate perceptual thresholds. Lately, studies using functional Magnetic Resonance Imaging (fMRI) showed that emotive aspects of visual stimuli activated not only canonical limbic regions, but also sensory areas in the cerebral cortex. However, it is still arguable to what extent such emotive, related activation in sensory areas of the cortex are affected by physical characteristic or attribute difference of stimuli. To manipulate valence of stimuli while keeping visual features largely unchanged, we took advantage of the Expressional Transfiguration (ET) of faces. In addition, to explore the sensitivity of high level visual regions, we compared repeated with unrepeated (i.e. different) stimuli presentations (fMR adaptation). Thus, the dynamics of brain responses was determined according to the relative signal reduction during repeated relative to different presentations (adaptation ratio). Our results showed, for the first time, that emotional valence produced significant differences in fMR adaptation, but not in overall levels of activation of lateral occipital complex (LOC). We then asked whether this emotion modulation on sensory cortex could be related to previous personal experience that attached negative attributes of stimuli. To clarify this, we investigated Posttraumatic Stress Disorder (PTSD) and non-PTSD veterans. PTSD is characterized by recurrent revival of trauma-related sensations. Such phenomena have been attributed to a disturbed processing of trauma-related stimuli, either at the perceptual level or at the cognitive level. We assumed that PTSD veterans would differ from non-PTSD veterans (who have similar combat experience) in their high order visual cortex responses to combat-related visual stimuli that are associated with their traumatic experience. An fMRI study measured the cerebral activation of subjects while viewing pictures with and without combat content, in repeated or different presentation conditions. The emotive effect on the visual cortex was found, again, only in the fMR-adaptation paradigm. Visual cortical regions showed significant differences between PTSD and non-PTSD veterans only in repeated presentations of trauma-related stimuli (i.e. combat). In these regions, PTSD veterans showed less decrease in signal with repeated presentations of the same combat-related stimuli. This finding points to the possibility that traumatic experience modulates brain activity at the level of sensory cortex itself.  相似文献   

10.
11.
Adult Hyalomma truncatum ticks with uncovered and foil-covered eyes were exposed to an upright-positioned rectangle as a target giving a luminance contrast ratio of 5:1 at a sun-simulating radiation. The transmission rate of the foil was less than 0.003%. Significantly (p0.05) more locomotorally active ticks with uncovered eyes (36.6%) responded to the target than ticks with foil-covered eyes (7.3%). When the rectangle was illuminated by monochromatic light at wavelengths ranging between 420 and 648 nm, the target induced a positive scototaxis in ticks with uncovered eyes regardless of the wavelength range. In contrast, ticks with covered eyes did not exhibita positive scototaxis at wavelength ranges of 553–585 and 608–648 nm and very few ticks responded only to other wavelength ranges. The results indicate that the eyes are the only or at least the most essential sense organs in the visual system of adult H. truncatum ticks.  相似文献   

12.
The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.  相似文献   

13.
Careful investigation of the form of animal signals can offer novel insights into their function. Here, we deconstruct the face patterns of a tribe of primates, the guenons (Cercopithecini), and examine the information that is potentially available in the perceptual dimensions of their multicomponent displays. Using standardized colour-calibrated images of guenon faces, we measure variation in appearance both within and between species. Overall face pattern was quantified using the computer vision ‘eigenface’ technique, and eyebrow and nose-spot focal traits were described using computational image segmentation and shape analysis. Discriminant function analyses established whether these perceptual dimensions could be used to reliably classify species identity, individual identity, age and sex, and, if so, identify the dimensions that carry this information. Across the 12 species studied, we found that both overall face pattern and focal trait differences could be used to categorize species and individuals reliably, whereas correct classification of age category and sex was not possible. This pattern makes sense, as guenons often form mixed-species groups in which familiar conspecifics develop complex differentiated social relationships but where the presence of heterospecifics creates hybridization risk. Our approach should be broadly applicable to the investigation of visual signal function across the animal kingdom.  相似文献   

14.
As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.  相似文献   

15.
生物结皮粗糙特征——以古尔班通古特沙漠为例   总被引:1,自引:0,他引:1  
王雪芹  张元明  张伟民  杨东亮 《生态学报》2011,31(14):4153-4160
摘要:空气动力粗糙度可以反映地表气流与下垫面的相互作用。古尔班通古特沙漠是我国最大的固定、半固定沙漠,其间广泛分布的生物结皮在稳定地表和改善环境方面意义重大。对未经扰动的4种类型生物结皮进行表面微形态观察,并通过风洞实验确定动力粗糙度Z0和摩阻风速u*,结果表明:(1)不同生物结皮类型,其组成和表面微形态等都具有明显差异。藻结皮以表面致密光滑为显著特征,由藻类分泌物和藻丝体粘结细粒物质所形成;地衣结皮表面藻类和真菌形成的叶状体匍匐沙面生长,呈现三维生长方式,形成有明显凹凸的壳状覆被;苔藓结皮以苔藓植物体密集丛生为特点,地上部分出现了茎叶分化,有一定的柔韧性。(2)就动力粗糙度的大小而言,是按地衣结皮>藻类-地衣结皮>苔藓结皮>藻结皮的顺序排列的,Z0平均值依次为(6.5890.850)mm、(4.1790.239)mm、(2.5420.357)mm和(0.3930.220)mm,与定床裸沙面的(0.0420.019)mm相比,生物结皮Z0值提高了10—150倍。随着风速的增大Z0值有所减小,其中以地衣结皮的减小趋势较为明显。(3)由风速廓线对比发现,四类生物结皮对气流阻滞作用的差异主要局限于4 cm以下的高度范围,风速越大这种差异也越大。各类生物结皮摩阻风速u*随风速增大而增大,其中藻结皮的增大速率明显低于其它三类结皮,说明藻结皮随风速增大的阻滞效应较其它三类结皮要差。(4)在净风条件下,地衣结皮具有最好的防风效果,其次为藻类-地衣结皮和苔藓结皮,藻结皮最差。当生物结皮破损后,床面结构和气流性质将发生变化,对空气动力学粗糙度和摩阻风速产生的影响将有待于进行更深入的研究。  相似文献   

16.
Previous research suggests that the right and left hemispheres dominate global and local perception of hierarchical patterns, respectively. The current work examined whether global perception of hierarchi-cal stimuli requires coherent work of bilateral visual cortices using transcranial magnetic stimulation (TMS). Subjects discriminated global or local properties of compound letters in Experiment 1. Reaction times were recorded when single-pulse real TMS or sham TMS was delivered over the left or right visual cortex. While a global precedence effect (i.e., faster responses to global than local targets and stronger global-to-local interference than the reverse) was observed, TMS decreased global-to-local interference whereas increased local-to-global interference. Experiment 2 ruled out the possibility that the effects observed in Experiment 1 resulted from perceptual learning. Experiment 3 used compound shapes and observed TMS effect similar to that in Experiment 1. Moreover, TMS also slowed global RTs whereas speeded up local RTs in Experiment 3. Finally, the TMS effects observed in Experiments 1 and 3 did not differ between the conditions when TMS was applied over the left and right hemispheres. The results support a coherence hypothesis that global perception of compound stimuli depends upon the co-herent work of bilateral visual cortices.  相似文献   

17.
Previous research suggests that the right and left hemispheres dominate global and local perception of hierarchical patterns, respectively. The current work examined whether global perception of hierarchical stimuli requires coherent work of bilateral visual cortices using transcranial magnetic stimulation (TMS). Subjects discriminated global or local properties of compound letters in Experiment 1. Reaction times were recorded when single-pulse real TMS or sham TMS was delivered over the left or right visual cortex. While a global precedence effect (i.e., faster responses to global than local targets and stronger global-to-local interference than the reverse) was observed, TMS decreased global-to-local interference whereas increased local-to-global interference. Experiment 2 ruled out the possibility that the effects observed in Experiment 1 resulted from perceptual learning. Experiment 3 used compound shapes and observed TMS effect similar to that in Experiment 1. Moreover, TMS also slowed global RTs whereas speeded up local RTs in Experiment 3. Finally, the TMS effects observed in Experiments 1 and 3 did not differ between the conditions when TMS was applied over the left and right hemispheres. The results support a coherence hypothesis that global perception of compound stimuli depends upon the coherent work of bilateral visual cortices.  相似文献   

18.
Abstract

Magnitude estimates of the tactile roughness of raised-dot surfaces revealed that perceived overall roughness, defined as the combination of the perceived roughness of the dot pattern and the perceived roughness of the individual dots in the pattern, is an inverted U-shaped function of dot spacing, reaching a maximum at approximately 3.0?mm of dot separation. The hypothesis that Pacinian corpuscles are involved in roughness perception has been supported by the finding that selective adaptation of the Pacinian corpuscle (PC) channel with a 250-Hz stimulus at 20-dB SL results in a decrease in the perceived overall roughness of the raised-dot surface at the fingertip. The effect of PC channel adaptation on perceived overall roughness was attributable entirely to a reduction in the perceived roughness of the individual raised dots; PC adaptation had no effect on the perceived roughness of the raised-dot pattern. Selective adaptation of the slowly adapting type I (SA I) channel with a 5-Hz stimulus at 20-dB SL had the opposite effect of PC channel adaptation and resulted in an increase in the perceived roughness of the individual raised dots, and consequently the perceived overall roughness of the raised-dot surface. As was the case with PC channel adaptation, SA I channel adaptation had no effect on the perceived roughness of the pattern. Adaptation with a compound adapting stimulus containing 5- and 250-Hz components at 20-dB SL had no effect on perceived overall roughness, which suggests that the PC and SA I channels operate antagonistically in an opponent-process fashion in the perception of the microstructure of a textured surface. Neither PC adaptation nor SA I adaptation affected perceived pattern roughness, which suggests that pattern roughness is coded by relative rather than by absolute spatial variation in firing rate.  相似文献   

19.

Background

Women with anorexia nervosa (AN) have aberrant cognitions about food and altered activity in prefrontal cortical and somatosensory regions to food images. However, differential effects on the brain when thinking about eating food between healthy women and those with AN is unknown.

Methods

Functional magnetic resonance imaging (fMRI) examined neural activation when 42 women thought about eating the food shown in images: 18 with AN (11 RAN, 7 BPAN) and 24 age-matched controls (HC).

Results

Group contrasts between HC and AN revealed reduced activation in AN in the bilateral cerebellar vermis, and increased activation in the right visual cortex. Preliminary comparisons between AN subtypes and healthy controls suggest differences in cortical and limbic regions.

Conclusions

These preliminary data suggest that thinking about eating food shown in images increases visual and prefrontal cortical neural responses in females with AN, which may underlie cognitive biases towards food stimuli and ruminations about controlling food intake. Future studies are needed to explicitly test how thinking about eating activates restraint cognitions, specifically in those with restricting vs. binge-purging AN subtypes.  相似文献   

20.
《Journal of Physiology》2013,107(6):517-525
A number of recent neuroimaging studies using self referential tasks have investigated whether self referential processing depends on a unique neural basis that operates specifically in the medial prefrontal cortex. However, these studies have provided contradictory results despite the use of similar methodologies. We hypothesized that these discrepancies are partially related to the task-difficulty that presents dissociations reaction times in the self- and other-referential tasks. We therefore measured brain activity during self and other referential tasks to determine if such activity can be dissociated according to the reaction times (fast versus slow) for the trait words. Activation differed across self and other only in the slow word condition. The self referential condition with slow reaction time produced greater activation in the ventromedial prefrontal cortex, whereas the other referential condition with slow reaction time produced activation of the middle temporal gyrus. Results suggested that the task-difficulty might affect whether or not brain activities within MPFC would be dissociated between self- and other-referential processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号